
Secure and Efficient Searchable Encryption
with Leakage Protection

Shujie Cui

A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy

in Computer Science, The University of Auckland, 2019.

This thesis is for examination purpose only and is confidential to the examination process.

To all those who contributed to the work described in this thesis, and to all those

who will read this in the future and find it useful.

Acknowledgements

The work presented in this thesis would not have been possible without the collab-

oration of a considerable number of people to whom I would like to express my

gratitude.

First and foremost, I would like to deeply thank my supervisors, Giovanni Rus-

sello, Steven D. Galbraith, and Muhammad Rizwan Asghar, for providing all the

conditions and the environment for exploring new ideas, and for helping me over-

come all challenges I had to face during my Ph.D. research. Whenever I encoun-

tered problems and difficulties, they always gave me suggestions and ideas on how

to proceed. Without their encouragement, patient guidance, and endless efforts in

helping me, I could not finish this thesis.

Second, my sincere gratitude further goes to my colleagues Ming Zhang, Rong

Yang, and Jin Yang for helping me implement the prototypes of the systems pre-

sented in this thesis. Without their help, I could not have evaluated my proposals

precisely and efficiently. I am also thankful for my other labmates at the Univer-

sity of Auckland, including Sana Belguith, Lukas Zobernig, and Zhijie Li. Many

thanks to them for being so supportive and helpful during my Ph.D. study and for

making our lab a lovely place to work.

Third, this research is supported by STRATUS (Security Technologies Returning

Accountability, Trust and User-Centric Services in the Cloud), a project funded by

the Ministry of Business, Innovation and Employment (MBIE), New Zealand. I

am grateful to acknowledge its support.

Last but not least, I am grateful to my parents, my grandparents, and my brother,

for their love and encouragement. I dedicate this thesis to them!

Abstract

Cloud computing is a successful paradigm offering companies and individuals un-

limited data storage and computational power at attractive costs. Despite its bene-

fits, cloud computing raises security concerns for sensitive data. Once the data is

outsourced, it is directly exposed to careless or potentially malicious Cloud Ser-

vice Providers (CSPs). Moreover, the data can be learned by intruders due to the

possible compromise of the cloud platform. To protect the outsourced data, it is

necessary to encrypt the data before uploading them to the CSP. However, stan-

dard cryptographic primitives do not allow the CSP to do any operation over the

encrypted data, including search.

The concept of Searchable Encryption (SE) provides a more promising solution

to support searching over encrypted data while protecting outsourced data from

unauthorised accesses by CSPs. In the literature, a plethora of SE schemes have

been proposed. Unfortunately, a majority of them expose information about data

and queries, called leakage, to the CSP. In recent years, a series of works illustrate

that the CSP is potentially able to recover the content of data by analysing the

leakage.

This thesis presents three different SE schemes with minimised leakage, which not

only ensure the confidentiality of the data, but also resist existing leakage-based

attacks. Moreover, in multi-user settings, the proposed schemes do not need to up-

date the key or re-encrypt the data when revoking compromised users. Meanwhile,

the proposed SE schemes guarantee a practical user experience, where users only

need to encrypt queries and decrypt results. The first proposed SE scheme is built

on top of the hybrid cloud infrastructure, where a trusted private cloud platform is

deployed between users and the public CSP. The second solution is designed for

the organisations without private cloud platforms, which can be deployed across

two public CSPs. The last solution combines SE with Intel Software Guard Ex-

tension (SGX), a trusted hardware that can be embedded in the CSP. We present

a theoretical security analysis for the three schemes. We also implemented proto-

types and evaluated their performance. The results demonstrate that the proposed

schemes can efficiently address the challenging problems in practice.

Contents

Acknowledgements iii

Abstract v

Contents viii

List of Figures xii

List of Tables xiii

List of Algorithms xiv

Nomenclature xiv

1 Introduction 1
1.1 Motivation . 1

1.2 Design Goals . 4

1.3 System Settings . 4

1.4 Our Contributions . 5

1.5 Organisation . 7

2 Leakage and Attacks 9
2.1 Notations . 9

2.2 Leakage Level Definition . 12

2.3 Attacks against SE Solutions . 15

2.3.1 Frequency Analysis Attack . 15

2.3.2 IKK Attack . 16

2.3.3 File-injection and Record-injection Attack 17

2.3.4 Count and Relational-count Attack . 17

2.3.5 Reconstruction Attack . 18

viii

CONTENTS

2.4 Countermeasures and Challenges . 19

2.4.1 Size Information . 19

2.4.2 Search Pattern . 20

2.4.3 Access Pattern . 21

2.4.4 Forward and Backward Privacy . 23

3 Dummy Records Generation 25

3.1 Security Requirements . 25

3.2 Static Databases . 27

3.3 Dynamic Databases . 31

3.3.1 Solution 1 . 31

3.3.2 Solution 2 . 34

3.3.3 Solution 3 . 36

3.3.4 Conclusion . 37

4 Hybrid Cloud Based Solution: ObliviousDB 39

4.1 Overview of ObliviousDB . 41

4.1.1 System Model . 41

4.1.2 Proposed Approach . 42

4.2 Solution Details . 44

4.2.1 Setup . 44

4.2.2 Group Generation . 44

4.2.3 Data Encryption . 46

4.2.4 Query Encryption and Execution . 48

4.2.5 Oblivious Algorithm . 50

4.2.6 Database Updating . 51

4.3 Security Analysis . 53

4.4 Performance Analysis . 57

4.4.1 Group Generation . 58

4.4.2 Select Query Evaluation . 59

4.4.3 Insert Query Evaluation . 61

4.5 Related Work . 62

4.5.1 Schemes with Controlled Leakage . 62

4.5.2 Multi-user SE Schemes . 63

4.6 Conclusions and Future Work . 64

ix

CONTENTS

5 Multi-Cloud Based Solution 67
5.1 Solution Overview . 69

5.1.1 System Model . 69

5.1.2 Threat Model . 70

5.1.3 Approach Overview . 70

5.2 Solution details . 71

5.2.1 Setup . 71

5.2.2 Select Query . 74

5.2.3 Shuffling and Re-randomisation . 77

5.2.4 User Revocation . 78

5.2.5 Database Updating . 78

5.3 Security Analysis . 80

5.3.1 The Security Analysis against the SSS 81

5.3.2 The Security Analysis against the WSS 82

5.4 Performance Analysis . 84

5.4.1 Complexity Analysis of P-McDb . 84

5.4.2 Benchmark of P-McDb . 86

5.5 Discussion . 90

5.6 Related SE schemes Using multiple Servers 90

5.7 Conclusion . 91

6 Preserving Access Pattern Privacy in SGX-Assisted Encrypted Search 93
6.1 Background . 96

6.1.1 Intel SGX . 96

6.1.2 Side Channel Attacks on SGX . 96

6.2 Solution Overview . 97

6.2.1 System Entities . 97

6.2.2 Threat Model and Assumptions . 98

6.2.3 Architecture Overview . 98

6.2.4 Security Definition . 99

6.3 Solution Detail . 99

6.3.1 Data Representation . 99

6.3.2 Data Encryption . 102

6.3.3 Searching Tree . 102

6.3.4 Equality Query . 105

6.3.5 Range Query . 106

6.3.6 Returning Search Results . 108

x

CONTENTS

6.4 Complex Queries . 108

6.4.1 Aggregate Functions . 109

6.4.2 Join Queries . 110

6.5 Security Analysis . 112

6.6 Performance Analysis . 114

6.6.1 Implementation . 115

6.6.2 TPC-H Benchmarking . 115

6.6.3 Big Data Benchmarking . 119

6.7 Related Work . 119

6.8 Conclusions and Future Work . 120

7 Conclusions and Future Work 123
7.1 Summary . 123

7.2 Future Work . 124

References 127

List of My Publications 141

xi

List of Figures

3.1 The number of required dummy records with different group sizes for TPC-H

‘ORDERS’ dataset. 27

4.1 An overview of ObliviousDB. 41

4.2 The process time taken by each phase when changing the number of groups. . . 59

4.3 The process time taken by each entity when changing the number of groups. . . 59

4.4 The process time taken by each phase when changing the result size. 60

4.5 The process time taken by each entity when changing the result size. 60

4.6 The performance of insert queries. 61

5.1 An overview of P-McDb. 69

5.2 The performance of the WSS in different cases. 86

5.3 The performance of each operation and entity. 87

5.4 The performance of the insert query. 89

6.1 An overview of the proposed approach. 97

6.2 A B+ tree index example with branch = 4, 3 levels, and 13 nodes. 100

6.3 Tree search time with 1 million keys. The branch factoring=32. 115

6.4 The time of finding the MAX value among 1000 matched records. 117

6.5 The time of executing a join query. 118

xii

List of Tables

2.1 A comparison of SE schemes. 11

2.2 Summary of leakage profiles and attacks against encrypted databases. 15

3.1 Comparison of the solutions for managing dummy records. 37

4.1 Data representation in ObliviousDB. 43

4.2 The storage overhead with different numbers of groups. 58

5.1 Data representation in P-McDb. 72

5.2 The computation and communication overhead for each record or each query. . 85

6.1 Comparison of recent SGX-based schemes. 94

6.2 The details of the tested queries. 115

6.3 Comparison with ObliDB and the baseline. 116

xiii

List of Algorithms

1 RcdEnc(rcd, f lag,s) . 46

2 NonceBlind(Ercd,Grcd,GDB,counter) . 47

3 Query(Q,s) . 48

4 Oblivious(EQ. f ,GE(Q.e)) . 50

5 Insert(rcd,s) . 51

6 RcdEnc(rcd, f lag,s1,s2) . 73

7 Query(Q,s1,s2) . 75

8 Shu f f le(IL,s2) . 77

9 Insert(rcd) . 79

10 Query(EQ, tree,P) . 103

11 EqualitySearch(Q,Nodes,b,mid, isLastLevel) 105

12 RangeSearch(Q,Nodes,b,mid) . 107

13 MAX(Ercds,rids,m) . 108

14 SUM(Ercds,rids,m) . 109

15 Join(tree1, tree2) . 110

16 JoinSearch(Nodes1, len1,Nodes2, len2,res) 110

xiv

Chapter 1

Introduction

1.1 Motivation

Cloud computing is a successful paradigm offering companies and individuals virtually unlim-

ited data storage and computational power at very attractive costs. Despite its benefits, cloud

computing raises serious security concerns for preserving the confidentiality of sensitive data,

such as medical, social, and financial information. Once the data is outsourced, it is exposed

to careless or even potentially malicious Cloud Service Providers (CSPs). Moreover, the data

could also be learned by third party intruders because the cloud platform could be compro-

mised. In this context, the data owner lacks a valid mechanism for protecting the data from

unauthorised access.

A straightforward method to solve the issue is to encrypt the data with standard crypto-

graphic primitives, such as AES and 3DES, before uploading it to the CSP. However, this

method is not practical for the applications requiring to perform search over the data, such as

relational databases, web applications, and machine learning tools. The reason is that standard

cryptographic primitives do not support search operations over encrypted data. If a piece of

data is required, a trivial solution is that the user downloads all the content to its local (trusted)

environment, decrypts the data, and performs the search operation. Unfortunately, this trivial

solution does not scale well when the database is very large. Alternatively, we can provide the

CSP with the key to decrypt all data. Then, the CSP can search the decrypted data to retrieve

the required part. This method is used in most of the commercial public cloud services, such

as Amazon S3 [1]. However, this approach still allows the CSP to learn the content of data and

queries.

In privacy-sensitive applications, both the data and the query imply privacy information of

data owners and users. For instance, in electronic healthcare systems, medical records contain

physical conditions of patients, and the queries issued by doctors indicate their specialities and

1

medical preferences. In practice, the CSP might be trusted. However, they can be compromised

and controlled by external adversaries. Moreover, an employee in the CSP company could also

be malicious. The attacker who compromises the cloud server or the malicious employee in

the CSP might sell such information to insurance and medical companies for personal benefits.

For simplicity, in the rest of this work, we treat the CSP as the attacker who makes effort to

learn the content of data and queries and infer user privacy. Therefore, it is important to ensure

the confidentiality of both of the data and queries when outsourcing sensitive data to the cloud.

The concept of Searchable Encryption (SE) provides a promising solution to support search-

ing over encrypted data while protecting outsourced data from unauthorised accesses by CSPs.

In SE schemes, encrypted data is tagged with encrypted keywords in such a way that a CSP,

which is given an encrypted search term, can check whether a record has the keywords that

satisfy the search term without decrypting the record or the search term. In other words, SE

not only supports search operations but also ensures confidentiality of both the record and the

query. Based on the underlying encryption primitives, SE schemes could be Symmetric Search-

able Encryption (SSE) or Public key Encryption with Keyword Search (PEKS) [2]. In general,

SSE is much more efficient than PEKS, yet PEKS is more flexible to support multi-user access.

Since the seminal paper by Song et al. [3], a plethora of SE schemes have been proposed.

A long line of works, such as [3–24], focus on investigating SE with complex functionality

(e.g., multi-keyword search, range queries, rank search, boolean search, and fuzzy search) and

improved performance. Unfortunately, a majority of them expose sensitive information about

data and queries, called leakage, to the CSP. For instance, from the encrypted database, the CSP

might learn the number of times each keyword appears in the database (we call this frequency

information). From the search operations, the CSP is able to see the access pattern, i.e., the

physical location and ciphertext of encrypted data accessed by a given query. Moreover, the

CSP can also infer if two or more queries have the same underlying keywords or not (if the

queries are equivalent or not, or if the queries search for the same data or not), referred to as

the search pattern, by comparing the encrypted queries or their matched data. Last but not

least, the CSP can simply log the number of matched records or files returned by each query,

referred to as the size pattern.

A series of more recent works [25–30] illustrate that the CSP is potentially able to recover

the content of queries and data by analysing the leakage. For instance, Islam, Kuzu and Kantar-

cioglu [25] showed how the access and search patterns can be exploited to recover queries. This

attack is referred to as IKK attack in the literature. Naveed et al. [26] recover more than 60%

of the data stored in CryptDB [17] using frequency analysis. Cash et al. [27] give a compre-

hensive analysis of the leakage in SE solutions for file collections and introduced the count

attack, where the CSP could recover queries by counting the number of matched records even

if the encrypted records are semantically secure. Unfortunately, the majority of the existing SE

2

solutions, such as [3–24], are vulnerable to these attacks due to the leakage of search, access,

and size patterns.

In addition to the search, access, and size patterns, the SE scheme might leak more infor-

mation when executing insert and delete queries. Based on whether the scheme still supports

data updating after the database bootstrapping, the SE schemes are generally categorised into

static and dynamic. In static SE schemes, such as [8, 21, 31], users cannot update the data

once the database is encrypted and uploaded to the CSP. In contrast, dynamic SE schemes, e.g.,

[6, 14, 19], still support insert, update, and delete operations after bootstrapping the database.

Dynamic SE schemes leak extra information if they do not support forward privacy and back-

ward privacy properties. Lacking forward privacy means that the CSP can learn if newly in-

serted data or updated data matches previously executed queries. Lacking backward privacy

means that the CSP learns if deleted data matches new queries. In [28], Zhang et al. inves-

tigate the consequences when dynamic SE schemes fail to ensure the forward privacy, and

introduce the file-injection attack. Specifically, the CSP could recover a very high fraction of

searched keywords by injecting a small number of known files and observing the access pat-

tern. Supporting forward and backward privacy is fundamental to limit the power of the CSP

to collect information on how the data evolves over time. Several of the existing schemes, such

as [7, 19, 32, 33], support forward privacy, but only [34, 35] are able to support both properties

simultaneously.

Privacy-sensitive applications, such as electronic healthcare systems, impose stringent se-

curity requirements when it comes to data outsourcing. The first step to meet those require-

ments is to minimise information leakage that could lead to inference attacks, i.e., the attacks

where the CSP can infer the content of the data or the queries based on the obtained leak-

age. Oblivious Random Access Memory (ORAM) [36–38] is a cryptographic primitive that

allows a client to access memory locations from a server without revealing the access pattern.

Homomorphic Encryption (HE) [39, 40] is a form of encryption supporting computation on

encrypted data. Moreover, after decryption, the computation result is the same as the result of

performing identical operations on the plaintext. As shown in [41–43], both the ORAM and

HE techniques can be leveraged in SE schemes to protect the patterns from the CSP. However,

existing ORAM and HE techniques are prohibitively costly and impractical. In this thesis, we

are concerned with practical solutions where users can get the required data efficiently without

incurring impractical storage, communication and computation overheads. Moreover, in multi-

user settings, where the systems allow multiple users to read and/or write the data, users could

join or leave the system at any time, ideally without affecting the rest of the users. Unfortu-

nately, ORAM-based and HE-based solutions fail to cover these important aspects. Therefore,

a fundamental problem is to develop secure and practical SE schemes for privacy-sensitive

applications in multi-user settings.

3

1.2 Design Goals

Based on the above discussion, the goals of our SE schemes can be summarised below:

• First, we ensure confidentiality of the records and queries while the CSP is still able to

return the encrypted result to users correctly.

• Second, we aim at protecting the search, access, and size patterns from the CSP, and

ensuring the forward and backward privacy of the database, such that the CSP cannot

mount any leakage-based inference attack.

• Third, we also consider the key management for multi-user databases. Specifically, our

system allows revoking compromised users efficiently without regenerating the secret

key and re-encrypting the records.

• Fourth, we aim at achieving a practical experience on the user side. Specifically, the

user should be able to get the query result in an acceptable time. Moreover, the storage,

communication and computation overhead on the user side should be reasonable.

1.3 System Settings

Before discussing the contributions, we describe the system settings in our work.

In this thesis, we propose several incremental approaches to protect the confidentiality of

the data stored in outsourced databases. In particular, we focus on protecting the records stored

in relational databases. Roughly speaking, a relational database is a set of tables organised into

rows and columns. Each row in a table, also called a record or a tuple, consists of a sequence

of elements and represents an entity or item. Each column, or field, represents an attribute of

the entity. All the data referenced by a field is in the same domain and conform to the same

constraints. One single data value or element represents a cell in the table. Herein, we refer to

the database as a single table.

As mentioned above, based on whether the encrypted database supports insert, update and

delete queries, we categorise the encrypted databases into static and dynamic. A static database,

such as country names all over the world, only supports select queries. On the contrary, in dy-

namic encrypted databases, e.g., electronic healthcare systems, the user can still insert, delete,

or update records. In this thesis, we will discuss how to minimise information leakage for both

static and dynamic databases.

Moreover, we further categorise the dynamic databases according to their access settings

into Single-User (SU), Single-writer Multi-reader (SwMr) and Multi-writer Multi-reader (MwMr)

scenarios. Basically, in single-user databases, only the data owner can issue queries to read and

4

write the records. SwMr databases allow the data owner to insert, update, and delete records,

whereas, the other users are only authorised to issue select queries for data reading. In MwMr

schemes, multiple users can read and write the records. In all scenarios, the data owner aims

at protecting its data from the CSP and unauthorised users. Moreover, the data user aims at

concealing its queries and search results from others, including the CSP, the data owner, and

other users. The work in this thesis presents approaches to manage secret keys, and methods to

minimise information leakage for both the SwMr and MwMr applications.

Note that the static database is uploaded during the bootstrapping by the data owner or

the system administrator, and none can update it after the bootstrapping. Therefore, the static

database only supports single-user and SwMr scenarios.

1.4 Our Contributions

To achieve the above goals, we first summarise the leakage in existing SE schemes and analyse

how the leakage is leveraged in inference attacks to recover the records and queries. We also

discussed the possible countermeasures to withstand these attacks. The details are given in

Chapter 2. In particular, in Chapter 3, we present three different methods to hide the size

pattern and break the link between the size and search patterns.

Second, we have designed and implemented three different specific SE schemes that achieve

the above goals:

• ObliviousDB. We design a secure PEKS scheme built on top of the hybrid cloud infras-

tructure, called ObliviousDB. ObliviousDB is applicable for organisations with a hybrid

cloud infrastructure, where a trusted private cloud server is deployed between users and

the public CSP. According to the latest report given by RightScale [44], 51% of the enter-

prises are using the hybrid strategy. Basically, to protect the search pattern and data dis-

tribution in databases, ObliviousDB randomises both the encrypted queries and records.

The bilinear pairing technique enables the CSP to perform the search operation between

randomised queries and records. By using the proxy re-encryption primitives [4, 45],

ObliviousDB supports MwMr access. Furthermore, compromised users can be revoked

efficiently without updating keys and re-encrypting records. In addition, by delegating

part of the storage and computation overhead to the private cloud, both the forward and

backward privacy is guaranteed. Meanwhile, the leakage of access and size patterns

can be controlled with a tradeoff on performance. We implemented a prototype of the

scheme and tested its performance. The experiment result shows its practical efficiency.

This part of the thesis has been published in [46]. We present this scheme in Chapter 4.

• Multi-cloud encrypted database (P-McDb). P-McDb is our second solution achieving

5

the above goals. Unlike ObliviousDB, P-McDb utilises a multi-cloud strategy that in-

volves multiple untrusted public CSPs and does not rely on any trusted entity. Rightscale’s

latest report shows that 81% of the investigated enterprises use multi-cloud strategy, and

20% of them use multiple untrusted public CSPs [44]. Thus, P-McDb is feasible to

most of the enterprises. Roughly speaking, P-McDb employs two non-colluding CSPs.

One is responsible for storing the encrypted database and performing encrypted search

operations, and the other one is in charge of managing the auxiliary information used

for searching and ensuring higher security guarantees. As long as the two CSPs do not

collude together, the confidentiality of the records and queries are ensured even if the

CSPs mount inference attacks. Moreover, P-McDb also supports multi-user access, and

it can revoke any user efficiently without updating the keys and re-encrypting the records.

Another important aspect is, P-McDb is SSE scheme, and it is built based on only sym-

metric encryption and XOR operations, making it much more efficient than HE-based

and ORAM-based SE solutions, such as [41, 42, 47, 48]. This part of the thesis has been

published in [49] and described in Chapter 5.

• SGX-assisted encrypted database. The last solution presented in this thesis combines

SSE with Intel Software Guard Extension (SGX) [50], a trusted hardware that can be

embedded in the CSP. Ideally, if SGX can store the whole encrypted database and process

all the queries, the CSP will learn nothing. Unfortunately, SGX suffers from very limited

memory space and side channel attacks. Our solution addresses the two limitations.

Basically, B+ tree structure is leveraged in this solution to support sub-linear search.

Moreover, SGX loads and processes the tree indices in batches. On the one hand, this

method ensures that the access pattern is protected. On the other hand, SGX can also

process a large database without exhausting its memory. To mitigate side channel attacks,

the B+ tree is searched in a balanced way, independent of the query and the access

pattern. Furthermore, apart from the simple equality and range queries, this solution

also allows the CSP to perform aggregates, such as SUM, GROUP BY and ORDER BY,

join and other complex queries. To analyse the performance, we evaluate our proposed

scheme on Big Data benchmark [51] and compare it with ObliDB [52], an SGX-assisted

scheme guaranteeing the privacy of access pattern. Our scheme outperforms ObliDB by

at least 5.78×. We also compare our scheme with a baseline implementation without

access pattern protection but with sub-linear search support. Our results show that our

techniques to resist side channel attacks add less than 27× overhead when the B+ tree

contains 1 million keys. This scheme has been published in [53] and presented in Chapter

6.

6

1.5 Organisation

The rest of this thesis is organised as follows. In Chapter 2, we formally define the leakage

in existing SE schemes for databases and summarise the leakage-based attacks discovered in

recent years. Moreover, we discuss the possible ways to minimise the leakage and defend

against the attacks. In Chapter 3, we present several different approaches to avoid the size

pattern leakage. In Chapter 4, 5, and 6, we present the design and implementation details for

the proposed SE schemes: ObliviousDB, P-McDb and the SGX-assisted encrypted database,

respectively. Finally, in Chapter 7, we conclude the thesis and discuss the future research

directions.

7

Chapter 2

Leakage and Attacks

In this thesis, we mainly aim at minimising information leakage in SE schemes and resisting

leakage-based inference attacks. Before giving any solution, in this chapter, we first summarise

and define the leakage in existing SE schemes for databases. Second, we revisit the techniques

used in existing inference attacks. Finally, based on the leakage and techniques used in infer-

ence attacks, we give possible countermeasures to defend against such attacks.

2.1 Notations

In this section, we define the notations used throughout this thesis.

A database DB = {rcd1, ...,rcdN} = {(e1,1, ...,e1,F), . . . ,(eN,1, ...,eN,F)} is a N ×F two-

dimension array with N rows corresponding to records and F columns corresponding to fields

or attributes. Each record rcdid = (eid,1, ...,eid,F) consists of F elements and is identified with

an unique identifier id.

We define D f =
�N

id=1 eid, f as the keywords universe of field f , and define d f = |D f | as

its cardinality, where 1 ≤ f ≤ F . Let D =
�F

f=1 D f be the set of all different elements in DB.

Assume d = |D| and D = {e1, ...,ed}. For each element e ∈ D, DB(e) = {id|e ∈ rcdid} is

the set of identifiers of the records that contain e. O(e) = |DB(e)| is the occurrence of e in

DB, i.e., the number of records containing e. The data distribution DB can be presented as

Γ = {DB(e1), ...,DB(ed)}.

Let EDB be the encrypted version of DB, and |EDB| be the number of encrypted records in

EDB. Each encrypted record is represented as Ercd. The id of an encrypted record indicates its

storage location in EDB. Each element e is encrypted into e∗. Γ∗ = {EDB(e∗), ...} is the data

distribution of EDB, where EDB(e∗) = {id|e∗ ∈ Ercdid}. In particular, if e∗ is semantically

secure, |EDB(e∗)|= 1, ∀e∗ ∈ EDB.

We say EDB is static if it only supports select queries, i.e., no update, insert and delete

9

queries are ever expected. In static databases, the distribution Γ∗ does not change. On the

contrary, if EDB allows users to insert new records, delete or update old records after boot-

strapping, we say it is dynamic. In a dynamic database, Γ∗ varies with delete, insert and update

queries.

We use Q and EQ to represent a query and an encrypted query, respectively. In this thesis,

we focus on simple queries with only one predicate each. Thus, we formalise a SQL query as

Q = (type, f ,operator,e). Q.type represents the operation of the query, which can be ‘select’

and ‘delete’ for dynamic databases but can only be ‘select’ for static databases. The ‘insert’

queries are represented by encrypted records, and the ‘update’ queries can be performed by

deleting the old records first and inserting the updated records afterwards. Q. f is the field

identifier to be searched, and Q.e is the interested keyword. Q.operator is ‘=’ for equality

queries, and Q.operator ∈ {=,<,>,≤,≥} for range queries. An encrypted query is defined

as EQ = {type, f ,operator,e∗}. In particular, for any two queries Qi and Q j, we say they are

in the same structure, if Qi.type = Q j.type, Qi. f = Q j. f and Qi.operator = Q j.operator, and

Qi = Q j if Qi.e = Q j.e as well. On the contrary, Qi �= Q j if one of the attributes is unequal.

We say EQ(Ercd) = 1 when Ercd matches EQ. EQ(EDB) = {(id,Ercdid)|EQ(Ercdid) =

1} stands for the search result of EQ, which can be alternatively represented as SR(EQ).

As mentioned in Chapter 1, most of the SE schemes suffer from the leakage of the search,

access, and size patterns. Moreover, dynamic SE schemes may also fail to ensure the forward

and backward privacy. Here we give formal definitions for those properties.

Definition 1 (Search Pattern). Given a sequence of q queries (Q1, ...,Qq), the search pattern

represents the relationship between any two queries Qi and Q j, i.e., Qi = Q j or Qi �= Q j, where

q is a polynomial size and 1 ≤ i < j ≤ q.

Definition 2 (Access pattern). Given a sequence of q queries (Q1, ...,Qq), the access pattern

represents the records matching each query, i.e., (SR(Q1), ...,SR(Qq)).

Definition 3 (Size pattern). Given a sequence of q queries (Q1, ...,Qq), the size pattern repre-

sents the number of records matching each query, i.e., (|Q1(DB)|, ..., |Qq(DB)|), or (|SR(Q1)|,
..., |SR(Qq)|).
Definition 4 (Forward Privacy). Let Ercdt be an encrypted record inserted or updated at time

point t, a dynamic SE scheme achieves forward privacy, if EQ(Ercd) = 0 is always true for

any query EQ issued before t.

Definition 5 (Backward Privacy). Let Ercdt be an encrypted record deleted at time point t, a

dynamic SE scheme achieves backward privacy, if EQ(Ercd) = 0 is always true for any query

EQ issued after t.

In Table 2.1, we summarise a number of SE schemes proposed in the literature based on

whether they achieve the properties or not. These schemes either aims at supporting rich func-

10

Table 2.1: A comparison of SE schemes.

Schemes Search
pattern

Access
pattern

Size
pattern

Forward
privacy

Backward
privacy

Key
management Remark

Curtmola et al. [8] SSE-1 × × × Static Static � SSE
Curtmola et al. [8] SSE-2 × × × Static Static �� SSE
Cash et al. [31] × × × Static Static � SSE
Jarecki et al. [54] × × × Static Static � SSE
Bösch et al. [55] � × × Static Static � SSE
Cao et al. [5] � × × Static Static �� SSE
Wang et al. [43] � � � Static Static �� HE-based
Ishai et al. [41] � � � Static Static � ORAM-based
Chen et al. [56] – � � Static Static � SSE
Hang et al. [12] × × × × × � PEKS
Ferretti et al. [9] × × × × × � SSE
Popa et al. [17] × × × × × � SSE
Sarfraz et al. [18] × × × × × � SSE
Sun et al. [24] × × × × × � PEKS
Yang et al. [22] × × × × × � PEKS
Asghar et al. [4] × × × × × � PEKS
Bao et al. [57] × × × × × � PEKS
Popa et al. [58] × × × × × � PEKS
Tang [59] × × × × × � PEKS
Kiayias et al. [60] × × × × × � PEKS
Cash et al. [6] × × × × × � SSE
Kamara et al. [14] × × × × × � SSE
Kamara et al. [15] × × × × × � SSE
Hahn et al. [11] × × × × × � SSE
PPQED [42] × × × × × � HE-based
Naveed et al. [16] × × � × × � SSE
Stefanov et al. [19] × × × � × � SSE
Chang et al. [7] × × × � × � SSE
Rizomiliotis et al. [61] × × × � × � ORAM-based
Bost [32] × × × � × � SSE
Song et al. [62] × × × � × � SSE
Bost et al. [34] × × × � � � SSE
Zuo et al. [35] × × × � � � SSE
Sun et al. [63] × × × × � � SSE
Hoang et al. [64] � � × � � � SSE
PPQEDa [42] � � × � � � HE-based
Our objectives � � � � � � –

� and × indicate that the property is protected or not, respectively. � represents a Single User (SU) scheme. �� represents SwMr
scheme. � represents a MwMr scheme.

Static means the scheme does not support insert, update, or delete operations.

11

tionalities, like multi-keyword search, dynamic operation or multi-user access, or supporting

sub-linear search efficiency. Unfortunately, most of them suffer from leakage even if they

have been proved secure formally or informally under different security models. In this thesis,

we aim at proposing SE schemes that can resist leakage-based attacks by protecting the size,

search and access patterns, and ensuring both the forward and backward privacy. Meanwhile,

the proposed SE schemes should be dynamic and have flexible key management mechanisms

to support multi-user access. The proposed schemes could be SSE or PEKS. In the rest of this

thesis, we will give more details.

2.2 Leakage Level Definition

In [27], Cash et al. define four different levels of leakage profiles for encrypted file collections

according to the method of encrypting files and the data structure supporting encrypted search.

Yet, we cannot apply these definitions into databases directly, since the structure of a file is

different from that of a record in the database. In particular, a file is a collection of related

words arranged in a semantic order and tagged with a set of keywords for searching, whereas,

a record consists of a set of keywords with pre-defined attributes. Moreover, a keyword may

occur more than once in a file and different keywords may have different occurrences, whereas,

a keyword of an attribute generally occurs only once in a record. Starting on the leakage layers

defined in [27], in this section, we provide our own layer-based leakage definition for encrypted

databases. Specifically, we use the terminology leakage profile to describe the information the

CSP can learn about the data directly from the encrypted database and also the information

about the results and queries that can be learned during the access to the database.

The simplest type of SE scheme for databases is encrypting both the records and queries

with Property-Preserving Encryption (PPE), such as the DETerministic (DET) and Order-

Preserving Encryption (OPE). In DET-based schemes, the same data has the same ciphertext

once encrypted, i.e., e∗i = e∗j if ei = e j and in OPE-based schemes, the encrypted data has the

same order as their plaintext, e.g., e∗i > e∗j if ei > e j. In this type of SE scheme, the CSP can

check whether each record matches the query efficiently by just comparing their ciphertext.

However, these solutions have the greatest leakage. Specifically, in DET-based schemes, such

as CryptDB [17] (when the records are protected only with the PPE layer), DBMask [18] and

Cipherbase [65], before performing any query, the CSP can learn the data distribution, i.e., the

number of distinct elements and the occurrence of each element, directly from the ciphertext of

the database. Formally, we say the data distribution of DB is leaked if e∗ and e have the same

occurrence, i.e., O(e) = O(e∗), for each e ∈ DB, where e∗ is the ciphertext of e in EDB. To

support encrypted range queries, [17, 18, 65] also use OPE primitives, which reveal the order

of numerical data elements. In this thesis, we focus on equality queries. Therefore, we define

12

this leakage profile set as:

• L3 = {Γ}.

where Γ is the data distribution of the database and defined as Γ = {DB(e1), ...DB(ed)}.

The second type of SE for databases encrypts the data with semantically secure primitives,

but still encrypts the queries with DET encryption. By using semantically secure primitives,

the encrypted data is randomised. In this kind of scheme, the CSP can also perform search

operations efficiently by repeating the randomisation over the DET query and then comparing

it with the randomised data, as done in [11], Arx [66] and BlindSeer [67]. By encrypting the

data element with semantically secure encryption, O(e∗) = 1 for each e∗ ∈ EDB. Thus, both

the data distribution and the order of numbers are protected. However, after executing a query,

the CSP could still learn which and how many records match the query, i.e., the access and the

size patterns. Moreover, due to the DET encryption, whether the same query is repeated or not,

i.e., the search pattern, is also leaked. We define its leakage profile as:

• L2 = {size pattern, search pattern, access pattern},

Note that without performing any query, PPE-based databases has L1 leakage. After perform-

ing queries, PPE-based databases also leak the profiles included in L2.

A more secure SE solution leverages ORAM [37, 38] or combines HE with oblivious data

retrieval to hide the search and access patterns. For instance, the HE-based PPQEDa proposed

by Samanthula et al. [42] and the ORAM-based SisoSPIR given by Ishai et al. [41] hide both

the search and the access patterns. Specifically, to hide the data distribution and the search

pattern, both PPQEDa and SisoSPIR randomise the encrypted records and queries. To conceal

the access pattern from the CSP, in PPQEDa, the match result between records and queries is

encrypted and can only be learned by the user. Furthermore, the matched records are loaded

through oblivious transfer protocols. Thus, the CSP never learns which records match the

query. In SisoSPIR, whether each record matches the query is checked by the user, and the

access pattern is protected by using ORAM. Unfortunately, in both schemes, the CSP can still

learn how many records are returned to the user for each query, i.e., the communication volume.

According to [29], the HE-based and ORAM-based SE schemes have fixed communication

overhead between the CSP and users. Specifically, the length of the message sent from the

CSP to the user as the result of a query is proportional to the number of records matching the

query. Based on this observation, the CSP can still infer the size pattern. Thus, the HE-based

and ORAM-based SE schemes are vulnerable to size pattern-based attacks, such as the count

attack. The profile leaked in HE-based and ORAM-based SE schemes can be summarised

below:

• L1 = {communication volume}.

13

In addition to the leakage profiles defined above, the majority of existing SE schemes also

leak some basic information. Indeed, in order to maintain the search functionality of encrypted

records, most SE schemes, such as [17] and [4], only encrypt the interested table name, field

name and keyword involved in the query, whereas, the query type and query operator are kept

in plaintext. Furthermore, even if the interested field in the query is encrypted, the CSP can

still learn if any two queries search over the same field or not, called field pattern. since the

schema of the database is fixed and the CSPs can learn which field is searched for each query.

Formally, we define the field pattern as:

Definition 6 (Field Pattern). Given a sequence of q queries (Q1, ...,Qq), the field pattern repre-

sents the relationship between any two queries fields, i.e., whether Qi. f = Q j. f or Qi. f �= Q j. f .

Herein, we define this set of basic leakage as:

• L0 = {query type, query operator, field pattern}.

14

Table 2.2: Summary of leakage profiles and attacks against encrypted databases.

Leakage Schemes Attacks

L3

CryptDB [17]
DBMask [18]
Cipherbase [65]
Monomi [68]
Seabed [69]

Frequency analysis attack
IKK attack
Count attack
Record-injection attack

L2

Asghar et al. [4]
Blind Seer [70] [67]
Arx [66]
PPQED [42]

IKK attack
Count attack
Record-injection attack

L1
PPQEDa [42]
SisoSPIR [41] Count attack

L0
ObliviousDB [46]
P-McDb [49]
SGX-assisted encrypted database [53]

N/A

2.3 Attacks against SE Solutions

With the leakage levels defined in Section 2.2, the SE schemes are still provable secure under

either the real-ideal [7, 8], Universal Composable (UC) [71] or other specific security models.

However, in practice, the leakage can be exploited to recover the content of records and queries.

In recent years, a long line of research on leakage-based attacks has been proposed in the liter-

ature. Table 2.2 summarises the existing SE solutions for relational databases and the attacks

applicable to them. In this section, we illustrate how the existing leakage-based attacks could

recover the data and queries, including the frequency analysis attack introduced in [26], the IKK

attack proposed in [41], the file-injection attack presented in [28], the record-injection attack

defined in [72], the count attack introduced in [27], and the reconstruction attack proposed

in [29]. Specifically, for each attack, we analyse its leveraged leakage, required knowledge,

process, and consequences.

2.3.1 Frequency Analysis Attack

In [26], Naveed et al. describe an attack on PPE-based SE schemes, where the CSP could re-

cover the items in encrypted databases by analysing the leaked frequency information, i.e., the

data distribution. To succeed in this attack, in addition to the encrypted database, the CSP also

requires some auxiliary information, such as the application details, publicly available statis-

tics and prior versions of the targeted database. In practice, such auxiliary information could

be obtained by accessing the application, from documentations or through a prior data breach.

Moreover, publicly available statistics, e.g., census data or hospital statistics, can be obtained

online. In PPE-based SE schemes, the frequency information of an encrypted database is same

15

as that of the database in plaintext. By comparing the leaked frequency information with the

obtained statistics relevant to the application, the CSP could recover the encrypted items stored

in encrypted relational databases. For instance, most of the organisations, such as universi-

ties, publish their staff lists in their homepages, from which the CSP can learn the statistics of

names in the targeted organisations. Moreover, the CSP knows the owner of each encrypted

database by nature. By comparing the leaked frequency information with the owner organisa-

tion’s statistics of names, the CSP can infer the name of each record in the encrypted database.

Specifically, the field whose element distribution is close to the known name distribution could

be ‘Name’. Furthermore, the element with the highest occurrence could be the most popular

name in the organisation, and so forth. In [26], Naveed et al. recovered more than 60% of

records when evaluating this attack with real electronic medical records using CryptDB. We

stress that this attack does not require any queries or interaction with users. The encrypted

databases with L3 leakage profile, i.e., PPE-based databases, such as CryptDB and DBMask,

are vulnerable to this attack.

2.3.2 IKK Attack

IKK attack proposed by Islam et al. [25] is the first attack exploiting the access pattern leakage

in the literature. The goal of the IKK attack is to recover encrypted queries in encrypted

file collection systems, i.e., recover the plaintext of searched keywords. As required in the

frequency analysis attack, the CSP also needs to know some background knowledge of the

targeted dataset, and then the CSP could guess the possible keywords in the dataset and the

expected probability of any two keywords appearing in a file (i.e., co-occurrence probability).

Again, obtaining such information is not a hard task if the CSP knows the application scenario.

For instance, if the targeted files are from a university, ‘lecture’, ‘workshop’ and ‘tutorial’ could

be the possible keywords. The CSP can also simulate the expected co-occurrence probability

of any two keywords by carrying out a probabilistic analysis over publicly available online

datasets, such as the news and documents published in the univeristy’s website. Formally, the

CSP guesses m potential keywords and builds an m×m matrix C̃ whose element is the co-

occurrence probability of each keyword pair. The CSP mounts the IKK attack by observing the

access pattern revealed by the encrypted queries. Specifically, by checking if any two queries

match the same files or not, the number of files containing any two searched keywords (i.e.,

the co-occurrence rate) can be reconstructed. Assume the CSP observes n queries. It can

constructs an n×n matrix C with their co-occurrence rates. By using the simulated annealing

technique [73], the CSP can find the best match between C̃ and C and maps the encrypted

keywords to the guesses. In [25], Islam et al. mounted the IKK attack over the Enron email

dataset [74] and recovered 80% of the queries with certain vocabulary sizes.

The encrypted relational databases with leakage profile L2 or L1, such as Arx [66], Blind

16

seer [70], and PPQED [42], are also vulnerable to the IKK attack. To mount the IKK attack on

databases, the CSP needs to guess the co-occurrences of any two elements in two different fields

in the real database based on some background knowledge of the application. The encrypted

queries can be recovered by observing the revealed access pattern and comparing them with

the known dataset.

2.3.3 File-injection and Record-injection Attack

The file-injection attack [28] is the an active attack mounted on encrypted file collections,

which is also named as chosen-document attack in [27]. The file-injection attack attempts to

recover encrypted queries by exploiting the access pattern in encrypted file storage. Compared

with the IKK and the count attack (will be discussed in Section 2.3.4), much less auxiliary

knowledge is required: the CSP only needs to know the keywords universe of the system.

In [28], Zhang et al. presented the first concrete file-injection attack on file storage systems

and showed that the encrypted queries can be revealed with a small set of injected files. The

details of this attack is given below. The CSP sends files composed of the keywords of its

choice, such as emails, to users who then encrypt and upload them to the CSP, which are

called injected files. If no other files are uploaded simultaneously, the CSP can easily know the

storage location of each injected file. Moreover, the CSP can check which injected files match

the subsequent queries. By injecting enough files with different keyword combinations, the

CSP could recover the keywords included in queries by checking the keywords included in the

matched and unmatched injected files. Specifically, the keywords included in the matched but

not included in the unmatched injected files are the possible searched keywords. For instance,

if the injected files matching a query Q all contain w1 and w2, but w2 is also contained in other

injected files that do not match Q, the keyword involved in Q must be w1.

More recently, Abdelraheem et al. [30] mounted a similar active attack on encrypted rela-

tional databases with L2 or L3 leakage profiles, called record-injection attack. In file storage

systems, it is hard to recover the content of the whole file by mounting file-injection attacks,

since only the keyword is encrypted with SE. However, in databases, many elements of a record

might be encrypted with SE in order to support the search operation over these fields. Abdel-

raheem et al. showed that the record-injection attack could not only recover encrypted queries

but also fully recover encrypted records when the elements in all fields are encrypted with SE.

2.3.4 Count and Relational-count Attack

The count attack is proposed by Cash et al. in [27] to recover encrypted queries in file storage

systems based on the access pattern and size pattern leakage. As in the IKK attack scenario,

the CSP is also assumed to know an m×m matrix C̃ where its entry C̃[wi,w j] holds the co-

17

occurrence rate of keyword wi and w j in the targeted dataset. In order to improve the attack

efficiency and accuracy, the CSP is assumed to know, for each keyword w, the number of

matching files count(w) in the targeted dataset. The CSP mounts the count attack by counting

the number of files matching each encrypted query. For an encrypted query EQ, if the number

of its matching files (a.k.a. the result size |SR(EQ)|) is unique and equals to a known count(w),

the searched keyword included in EQ must be w. However, if the result size of a query EQ� is

not unique, all the keywords with count(w) = |SR(EQ�)| could be the candidates, and it is hard

to determine which one of them is correct only based on the result size. Recall that the CSP

can construct another matrix C that represents the observed co-occurrence rate between any

two queries based on the leakage of access pattern. By comparing C with C̃, the candidates for

the queries with non-unique result sizes can be reduced. Specifically, the CSP can discard the

wrong keyword candidates for EQ� by comparing the observed C[EQ�,EQi] with C̃, where EQi

represents a previously recovered query. Formally, the candidates set for EQ� can be reduced

to {w� : C̃[w�,wi] = C[EQ�,EQi]}, where wi is the keyword of EQi. With enough recovered

queries, it is possible to determine the keyword of EQ�. In [27], Cash et al. tested the count

attack against Enron email dataset and successfully recovered almost all the queries.

In [72], Abdelraheem et al. applied the count attack on relational databases and named

it the relational-count attack. The SE solutions for relational databases with leakage profiles

above L1 are vulnerable to the relational-count attack. The specific leakage leveraged in this

attack is the size pattern, i.e., the number of records matching each encrypted query. Due to

the fact that the co-occurrence rate of the elements in the same field must be zero, the relation-

count attack does not assume that the CSP has any knowledge about the co-occurrence rate

between element pairs. Unlike the file collection, in relational databases, the candidates for a

query with non-unique result size are limited to the elements in the searched field. Moreover,

which field is searched for each query can be easily learned by the CSP. Therefore, with the

knowledge of data elements in plaintext and their frequency information in the real database,

the CSP could infer the content of the encrypted queries by only observing their size patterns.

2.3.5 Reconstruction Attack

In ORAM-based systems, such as SisoSPIR proposed by Ishai et al. [41], the size, and access

patterns are concealed. Unfortunately, Kellaris et al. [29] observe that the ORAM-based sys-

tems have fixed communication overhead between the CSP and users, where the length of the

message sent from the CSP to the user as the result of a query is proportional to the number of

records matching the query. That is, for a query Q, the size of the communication sent from

the CSP to the user is α|Q(DB)|+β , where α and β are two constants. In theory, by giving

two (query, result) pairs, the CSP can derive α and β , and then infer the result sizes of other

queries. In [29], Kellaris et al. present the reconstruction attack that exploits the leakage of

18

communication volume, and could reconstruct the attribute names in encrypted databases sup-

porting range queries. In this attack, the CSP does not need to have any prior knowledge about

the data, or any of the issued queries or their results. The CSP only needs to know the un-

derlying query distribution prior to the attack. Their experiment illustrated that after a certain

number of queries, all the attributes can be recovered in few seconds. Since we focus on equal-

ity queries in this thesis, we do not give the attack details here. Nonetheless, after recovering

the size pattern for each query, the CSP could also mount the count attack on equality queries.

Specifically, given the occurrence of each possible keyword, the CSP could recover the queries

whose result sizes are unique. The SE schemes with L1 leakage profile are vulnerable to this

attack.

2.4 Countermeasures and Challenges

In this section, we investigate the challenges to block the leakage-based attacks mentioned

above and give possible countermeasures.

2.4.1 Size Information

In the rest of this thesis, we refer to the data distribution, size pattern, and communication

volume as the size information. The size information-based attacks include the frequency

analysis attack, the count attack, and the reconstruction attack.

As discussed in Section 2.3, the schemes with L3 leakage are vulnerable to the frequency

analysis attack, where the CSP can recover encrypted data by comparing the frequency infor-

mation with publicly available statistics. To withstand the frequency analysis attack, the data

frequency information should be protected from the CSP. A trivial approach is to encrypt the

data with semantically secure encryption primitive, as done in [4,66,70]. However, by perform-

ing search operations, the CSP can still learn the number of records matching each query. In

particular, when the query only involves an equality predicate, the number of returned records

stands for the occurrence of the searched keyword in the database. As mentioned in Section

2.3.4, by mounting the count attack, the encrypted queries can be recovered based on the size

pattern. That is, semantically secure encryption alone is not effective to prevent the count

attack.

To thwart the count attack radically, the number of records matching each query should be

protected from the CSP. Private Information Retrieval (PIR) [75,76] is one possible approach to

address this issue. PIR allows users to retrieve the data without leaking which data is retrieved.

Specifically, in PIR-based SE schemes, such as [77,78], the CSP returns a much larger data set

than required to the user, and then the user searches the data set locally to extract the matched

data. In this case, the size pattern is protected from the CSP. However, on the one hand,

19

PIR-based SE schemes increase the computation, storage and communication overhead on the

user side. On the other side, for the applications supporting multi-user access with different

permissions, PIR-based SE schemes have to ensure users cannot access unauthorised records

even if those records are returned.

As mentioned in [27], another possible countermeasure is to mask the data occurrences

with dummy or fake records. Herein, we define the record that consists of a sequence of ele-

ments but does not represent a meaningful item or entity as a dummy record. If the dummy

records are matchable by queries, each search result will contain a number of dummy records.

Furthermore, from the CSP point of view, if they are indistinguishable from real data, the num-

ber of real records will be protected from the CSP.

However, when using either PIR or dummy records, we should ensure that the communi-

cation volume returned to the user is not proportional to real result size, i.e., the number of

real records matching the query. Otherwise, as mentioned above, the CSP can still recover the

real result size and mount the count attack. To block the count attack, the relationship between

communication volume and the real result size should also be upset. In Chapter 3, we give

possible solutions to achieve that in details.

2.4.2 Search Pattern

To defend against the leakage-based attacks, it is also necessary to protect the search pattern

from the CSP. The search pattern indicates the relationship among the underlying keywords

of queries, i.e., if any two queries involve the same keyword or not. Informally, we say the

queries are indistinguishable or the search pattern is protected if the CSP cannot tell if they

involve the same keywords or not. If the search pattern is not protected, the CSP can learn if

users are searching for the same thing or not. Furthermore, when the CSP already recovers a

set of queries, it could learn what the users are searching directly based on the search pattern.

To protect the search pattern, the query must be encrypted with semantically secure en-

cryption, which makes the same queries look different once encrypted. Otherwise, the search

pattern is revealed directly from the ciphertext of encrypted queries. However, encrypting the

query with semantically secure encryption alone is not enough to protect the search pattern.

The search pattern can still be inferred from the size and access patterns. For instance, when

the result sets for two queries are in the same size, the CSPs can infer the two queries are

equivalent with a high probability. In particular, if the result size for each query is distinct, the

queries with the same result sizes must be the same. To prevent the CSP inferring the search

pattern from the size pattern, one possible solution is to ensure all the queries always match

the same number of records. An alternative method is to ensure all the queries always match

different numbers of records even when the same queries are repeated.

Unfortunately, even if the encrypted queries are semantically secure and all the queries

20

match with the same number of records, the CSP could still infer the search pattern by looking

at the access pattern. That is, by looking at the storage locations of the encrypted data returned

by a search, the CSP can infer that two queries are equivalent if the same result sets are returned

since generally only the same query gets exactly the same result set. We give the possible

solution for this issue in Section 2.4.3.

Recall that to prevent the frequency analysis attack, the encrypted data must be semantically

secure. When both the encrypted data and query are semantically secure, it is hard to check

if there is a match between the query and the records. To the best of our knowledge, the only

solutions in the literature use complex cryptographic primitives, such as the bilinear pairings

and HEs. These primitives tend to be much slower than traditional symmetric encryption. So

these methods do not scale well when processing the search operation over millions of records.

Therefore, the challenge is to find a more efficient way to test equality between semantically

secure encrypted data and queries. Addressing this challenge is one goal of this thesis. The

details of our solution are available in Chapters 5 and 6.

2.4.3 Access Pattern

As mentioned in Section 2.3, the IKK, count and file/record-injection attacks take advantage

of the access pattern leakage. Specifically, in the IKK and count attacks the CSP learns the

co-occurrence rate of keyword pairs from the access pattern, and in the file/record-injection

attacks the CSP learns if the injected files match the query from the access pattern. Protecting

the access pattern from the CSP is one of the hardest problems in SE schemes.

ORAM is a tool proposed to hide the access pattern leakage, and there has been a lot of

progress in the efficiency of ORAM schemes. However, it is still difficult to get a practical SE

scheme that is based on the ORAM technique. In the following, we give the four main obstacles

in using traditional ORAM in SE schemes. First, ORAM requires the user to know the storage

address of the data beforehand, which is not the case in SE schemes. On the contrary, in

SE schemes, the storage address of the required data is obtained by the CSP via performing

encrypted search. It is impractical to store all the addresses on the user side, especially for

the applications with thousands of users and resource-constrained devices. In particular, if all

the elements only occur once in the database, the storage on the user side will have the same

size as the storage on the CSP. Furthermore, it is hard to synchronise the storage over all the

users when the database is modified. Second, despite significant recent improvements [79–81],

ORAM incurs huge bandwidth, latency, and storage overheads, making it impractical for SE

schemes. According to the study by Naveed [82], the naive approach, downloading the whole

database and searching locally for each query, is still more efficient than ORAM. Third, ORAM

leaks information to users. In an application with fine-grained access control policies, users

should only get what they are allowed to access. However, in order to obfuscate the data

21

access, ORAM returns random data to the user when the required one is already cached. When

the returned random data is outside the access of the user, there is a leakage. Last but not least,

as illustrated in [29], the ORAM-based SE solutions still leak the communication volume to

the CSP.

HE is another technique can be utilised in SE to hide the access pattern. By using HE tech-

nique, the match result between encrypted records and queries can be hidden from the CSP,

such that the CSP is unable to learn which records match the result. Only the user can decrypt

the match result and get the indices of the matched records. Moreover, via ORAM technique

or oblivious transfer protocols [16], the matched records can be downloaded in an oblivious

manner. Based on the Paillier homomorphic cryptosystem [39], Wang et al. [43] present an

SE scheme that supports encrypted multi-keyword search and hides the access pattern over the

indices of encrypted file collection. In [42], Samanthula et al. also introduce an HE-based

SE scheme supporting complex query and protecting the access pattern from the CSP. Unfor-

tunately, all the HE-based SE schemes suffer from the impractical efficiency. For instance,

the solution presented in [43] takes around 160 seconds when searching over a database with

12000 files. The one given in [42] has worse performance.

By investigating the techniques used in access pattern-based attacks, we have to investigate

more practical solutions. As discussed in Section 2.3, the file-injection, IKK, and count attacks

leverage the leakage of access pattern. In the record-injection attack, apart from the ability to

inject files/records to the database, the CSP is also able to know which injected records match

the query and which do not. In both the IKK and the count attacks, in addition to the size pattern

leakage, another issue is the CSP can learn the co-occurrence rates of element pairs by checking

if any two search results contain the same record or not. Crucially, to resist access pattern-based

attacks, on the one hand, we need to make storage locations of the injected records untraceable

for the CSP, i.e., not let the CSP learn if the injected records match queries or not. On the other

hand, it is necessary to prevent the CSP from learning if any two search results contain the same

records or not. Based on these observations, one possible solution is to shuffle and re-randomise

searched records by a third entity after executing each query. Specifically, by shuffling and re-

randomising the records after each insert query, the CSP cannot trace the injected records, since

their ciphertext and storage locations are all changed. Furthermore, CSP is unable to tell if any

two results contain the same records or not. Meanwhile, the CSP cannot infer the search pattern

from the access pattern since it cannot tell if the search results of any two queries are the same

or not. The challenge is that the shuffling and re-randomising operations should not increase

the overhead on the user side, meanwhile, the user should be able to get the query result in an

acceptable time.

22

2.4.4 Forward and Backward Privacy

In dynamic databases, the data can be modified when the users issue insert, delete or update

queries. Encrypted dynamic databases might leak extra information if they cannot guarantee

forward and backward privacy properly. Forward privacy means that the CSP cannot learn if

newly inserted data or updated data matches previously executed queries. Backward privacy

means that the CSP cannot learn if deleted data matches new queries. Supporting forward and

backward privacy is fundamental to limit the power of the CSP to collect information on how

the data evolves over time. For instance, if the encrypted database cannot ensure forward and

backward privacy, the CSP could recover all the queries with the file/record-injection attack by

executing all the previous queries again over the newly injected records. Similarly, if the CSP

learns the plaintext of deleted records, then the queries could also be recovered by checking if

they match deleted data.

In the literature, the schemes proposed in [7, 19, 32, 35, 62, 83, 84] dedicate to achieve

forward privacy. Unfortunately, all of these proposals require the user to store a set of the latest

keys (or data states). The reason is that only the queries encrypted with the latest keys could

match records correctly. In multi-user settings, where multiple users could read and write to the

database according to the access control policies, if one of the users inserts or updates a new

record or file, the keys have to be updated, and then the new keys would have to be distributed

to other users. Otherwise, with the previous keys, the other users cannot get the correct result

set. The key management issue makes there schemes impractical for multi-user applications.

A more flexible approach is needed.

Another issue is related to the fact that these schemes cannot thwart the file/record-injection

attack. Indeed, the schemes proposed in [7,19,32,35,62,83,84] are not effective to ensure for-

ward privacy. When a new record rcd is inserted, the CSP cannot learn if it matches previous

executed queries or not at that moment. However, the CSP can still infer that by executing

more queries and checking the access pattern subsequently. Specifically, assume EQi and

EQ j are two queries executed before and after inserting rcd, respectively. If EQ j(EDB) =

EQi(EDB)∪ rcd, there is a high probability that EQi and EQ j involve the same keyword and

rcd matches EQi as well. In particular, if rcd is injected by the CSP, it can infer the underlying

keyword in EQi. Therefore, only ensuring the forward privacy is not sufficient to thwart the

file/record-injection attack. The access pattern should be protected simultaneously. To ensure

the confidentiality of queries and records, backward privacy should also be guaranteed. Un-

fortunately, to be best of our knowledge, only [35, 85] achieves both forward and backward

privacy.

In [34], Bost et al. define three levels of backward privacy based on how much metadata

leaks about the inserted and deleted records. The highest level, backward privacy with insertion

23

pattern, leaks the records currently matching each query, when they were inserted, and the to-

tal number of updates on each matched record. However, ensuring the backward privacy with

insertion pattern is still not sufficient to defend against file-injection/record-injection attack.

Specifically, the CSP can tell if the matched records were injected by itself based on their in-

sertion times, since the CSP knows when the malicious records were injected, and then recover

the queries. Here, we add one more level with less leakage that can resist file-injection/record-

injection attacks. We define it as strong backward privacy, where the CSP only learns which

records match each query, but cannot learn when the records were inserted and deleted, and

when and how many times the records have been updated. In short, in this level, the CSP

cannot trace the evolution of any records.

Therefore, another challenge to withstand the leakage-based attacks is to ensure both for-

ward and strong backward privacy effectively. In the remaining chapters, we will give the

details of our solution.

24

Chapter 3

Dummy Records Generation

In the previous chapter, we indicate that inserting dummy records into the database is an effec-

tive way to defend against the count attack. Moreover, the dummy records can also be used to

break the link between the size and search patterns. In this chapter, we provide more details on

how dummy records can help in protecting the size and search patterns. Also, we present the

details of generating dummy records for both static and dynamic databases.

For clarity, we first present a basic system setting. For specific schemes, the system will

be refined and explained in detail. Basically, in our setting, we define three main entities:

the administrator (admin), the data user, and the CSP. The admin manages the database. For

instance, she bootstraps the database, sets up security parameters, generates secret keys, and

revokes compromised users. The user is authorised to read and/or write records by issuing

queries to the CSP. In particular, if the user is authorised to insert records into the database, we

also call her data owner. As defined 1.3, in SwMr and single-user databases, only one user can

insert records, meaning there is only one data owner in such systems. On the contrary, MwMr

databases have multiple data owners since they allow multiple users to insert records. The CSP

is responsible for storing the database and executing queries issued by users. In the following,

we will give the responsibilities of admin and data user in detail for generating dummy records.

3.1 Security Requirements

In this section, we list the requirements for protecting the size and search patterns.

Recall that in the count attack, the CSP can recover an encrypted query if the number of its

returned records is unique. To prevent the count attack, it is necessary to hide the number of

records matching each query from the CSP. In Section 2.4.1, we mentioned that one possible

solution to mask the number of matched records is inserting dummy records into the database.

However, to protect the size and search patterns effectively, the inserted dummy records should

25

satisfy several requirements. First of all, the generated dummy records should be able to match

queries and indistinguishable from the real ones in the view of CSP. Otherwise, the CSP can still

tell the real size pattern for each query. Assume EQ(DB) represents the real records matching

the encrypted query EQ and EQ(EDB) represents both the real and dummy records matching

EQ when searching over the encrypted database EDB. If a number of dummy records can

match EQ, then |EQ(EDB)|≥ |EQ(DB)|. Moreover, if the CSP cannot tell how many records

in EQ(EDB) are dummy, |EQ(DB)| is protected from the CSP. However, if |EQ(EDB)| =
α|EQ(DB)|+β for all queries, i.e., there is a fixed linear (or more complicated) relationship

between |EQ(EDB)| and |EQ(DB)|, the CSP can still infer the size pattern. To thwart the count

attack, the total number of returned records for each query, should not be proportional to the

number of real records, i.e., there is no fixed relationship between |EQ(EDB)| and |EQ(DB)|
for different queries.

Satisfying the above three requirements, the size pattern can be protected from the CSP.

However, it is still not sufficient to protect the search pattern. The CSP could still infer if the

queries are searching the same data or not by comparing their result sizes. Specifically, the

queries are equivalent with a high probability when they match the same number of records. In

particular, if the occurrences of all elements in the database are different, the queries matching

the same number of records must be the equivalent. The remaining issue is how to break the

link between the size and search patterns. To achieve that, all queries should either always

match the same number records or match different numbers of records even when the same

queries are repeated. Either case can be achieved by managing the dummy records properly.

Besides, to guarantee the lightweight overhead on the user side, the dummy records should

be filtered out easily without decrypting them.

Above all, to protect the size and search patterns, the requirements for dummy records can

be summarised as below:

• R1: The dummy records should be able to match queries.

• R2: The encrypted dummy records should be indistinguishable from the encrypted real

records.

• R3: The number of returned records in total for each query should not be proportional

to the number of matched real records.

• R4: The queries should always match the same number of records or different numbers

of records even when the same query is repeated

• R5: The dummy records should be filtered out easily without decrypting them.

To satisfy R1 and R2, we could assemble dummy records by choosing elements from real

records, and encrypt them in the same way as real records. Meanwhile, to achieve R5, the

26

 0
 0.5

 1
 1.5

 2
 2.5

 3

 1 2 3 4 5 6 7 8 9#d
um

m
y

re
co

rd
s

(x
 1

0^
6)

#Elements in a group (x 10^4)

Fig. 3.1. The number of required dummy records with different group sizes for TPC-H
‘ORDERS’ dataset.

encrypted dummy records should be distinguishable from real ones by users. The details to

meet R1, R2, and R5 will be given in the remaining chapters. In this chapter, we focus on

R3 and R4. To achieve R3 and R4, the dummy records should be designed based on the

real data distribution in the database. Recall that we categorise the databases into static and

dynamic based on whether the encrypted database supports insert, delete and update queries.

The static database contains a fixed number of stable records, and only supports search queries

once it is encrypted and uploaded to the CSP. In other words, the number of elements and their

occurrences in static databases are fixed. On the contrary, in dynamic databases, the number of

elements and their occurrences can be changed with insert, delete, and update queries. Based

on the features of static and dynamic databases, we use different methods to meet R3 and R4.

3.2 Static Databases

For static databases, we assume the admin has all the records and uploads them to the CSP

during the bootstrapping. Users can only issue select queries.

As mentioned above, to prevent the CSP inferring the search pattern from the size pattern,

all queries should either always match the same number records or always match different

numbers of records even when the same queries are repeated. Given that static databases have

fixed data distribution, one solution is to ensure that all queries always match the same number

of records. This can be done by adding dummy records such that for each field, every element

of that field appears in a fixed number of records in the database, i.e., has the same occurrence.

In this way, R3 can also be satisfied. That is, the communication volume sent from the CSP to

the user is disproportional to the number of matched records. Indeed, the CSP always returns

the same volume of data to users no matter what the query is searching for. However, if the

occurrences of different elements have huge differences, a large number of dummy records

27

are required to ensure the elements in each field appear in the same number of records. For

instance, in TPC-H benchmark dataset [86], there are 1.5 million records in ‘ORDERS’ table.

For ‘CUSTKEY’ field, there are 99996 different elements and their occurrences range from

1 to 41. If we ensure all the ‘CUSTKEY’s appear in 41 records, around 2.6 million dummy

records are required, which is almost 2× of the real ones. Consequently, both the storage and

search latency increase significantly.

The storage overhead and system performance can be optimised by sacrificing security

guarantees. To ease the storage and computation overhead on the CSP, for some scenarios,

it is might acceptable to leak some partial information. For instance, in heathcare systems,

whether the doctors have the same surnames or not do not conceal much sensitive information

about the patients. When generating dummy records, the admin could just pad the doctors with

the same surnames into the same occurrences. Consequently, the CSP is unable to distinguish

if the queries matching the same number of records involve the same surnames or not, yet it

can still tell those matching with different numbers of records must search different surnames.

The good aspect is the number of required dummy records can be reduced significantly, such

lessens the storage and computation overhead on the CSP.

State-of-the-art. In [87], Bost and Fouque give a theoretical method to minimise dummy

records by sacrificing security guarantees. Specifically, they virtually divide the elements into

groups and pad those in the same group into the same occurrence with dummy records. As a

consequence, the queries involving the elements in the same group will always match the same

number of records. The CSP cannot distinguish these queries based on the sizes of their search

results and communication volumes. In other words, the CSP is unable to infer the search

pattern of the queries in the same group from the size pattern and communication volume.

Although the CSP can still tell the queries in different groups are different, the number of

required dummy records can be reduced significantly.

Our strategy. For static databases, we use the same strategy as [87] to protect the size and

search patterns while minimising the storage and computation overhead on the CSP. However,

in [87], Bost only considers the padding for file collections, where the keywords do not belong

to different attributes or fields. For relational databases, padding the elements in different fields

properly with minimised dummy records is much more complicated. For instance, different

fields might need different numbers of dummy records for the padding, making it difficult to

assign elements to dummy records as required. Herein, we instantiate this method for relational

databases with multiple fields.

Before generating dummy records, the admin first defines the security parameter λ and the

groups. Herein, λ stands for the minimum number of elements should be contained in each

group. Since the elements in the same group will have the same occurrence, the queries involv-

28

ing those elements will match the same number of records. Therefore, λ also represents the

security level of the search pattern. Formally, for any two queries matching the same number of

records, the probability of that they involve the same keyword is 1
λ . Specifically, when λ = 1,

the CSP can tell the queries matching the same number of records must be equivalent. On the

contrary, when λ equals to the number of elements in a field, i.e., all the elements in this field

are in one group, the CSP is unable to determine if the queries matching the same number of

records are equivalent or not. In particular, we also say the queries are in the same group if

they search for the elements in the same group.

The records can be grouped in many ways. To ease the storage and computation overhead

on the CSP, we aim at minimising the required number of dummy records. Indeed, the dummy

records are mainly used to pad the occurrence of each element to a threshold. If the occurrence

of each element is close to the threshold, the number of required dummy records will be small.

Thus, one possible method to minimise the required dummy records is putting the elements

with similar occurrences in the same group and takes the highest occurrence as the group

threshold. Specifically, the admin first populates the elements in each field (i.e., populates

D f , ∀ f ∈ [1,F]), and counts their occurrences. Then, the admin sorts the elements in Df

based on their occurrences in non-decreasing order. From the element with the minimum

occurrence to the one with the maximum occurrence, every λ elements are logically in the

same group, and the maximum occurrence in each group is its threshold. Formally, if the

ordered D f = (e1, ...,eλ , ...,ed f), where O(e1)≤ ...≤ O(eλ)≤ ...≤ O(ed f), there will be �d f
λ �

groups. Moreover, the i-th λ elements

Ei, f = {eiλ+1, ...eiλ+λ}

are in the i-th group gi, f and the threshold of this group is τi, f = O(eiλ+λ), where 0 ≤ i < �d f
λ �.

For each eiλ+ j ∈ Ei, f , τi, f −O(eiλ+ j) dummy records are required for its padding, where 1 ≤
j ≤ λ . Formally, for field f , the total number of required dummy records is

Σ f =

� d f
λ �

∑
i=1

λ

∑
j=1

(τi, f −O(eiλ+ j))

. Note that the last group might contain more than λ elements, and its threshold is O(ed f).

However, when d f < λ , the group contains less than λ elements. In this case, the admin pads

D f with λ −d f dummy elements, which could be meaningless elements out of the domain, e.g.,

random strings for ‘NAME’ and integers greater than 200 for ‘AGE’.

Recall that to protect the size and search patterns, the elements in the same group should

have the same occurrence. After defining the groups for all fields, the admin generates dummy

records to pad the occurrence of each element to its group threshold. In this thesis, we do not

29

consider the query with conjunctive predicates, so we do not make effort to pad the element

pairs also into the same occurrence. Therefore, when assigning elements to dummy records, the

elements in different D f can be assembled randomly. However, we consider the queries with

singe predicate searching over different fields. To protect the search pattern over all fields, the

elements in all fields should be grouped and padded. For the database with multiple fields, the

problem is different fields might require different numbers of dummy records. Assume Σmax =

max{Σ1, ...,ΣF}. To ensure the elements in all fields can be padded properly as required, the

dummy records inserted in total much be no less than Σmax. Whereas, Δ f = Σmax −Σ f dummy

records will be redundant for field f when inserting Σmax dummy records. For each eiλ+ j ∈ D f ,

τi, f −O(eiλ+ j) dummy records should be set to eiλ+ j in field f . However, there are still Δ f

dummy records unassigned in field f . The CSP can tell the records are dummy if the admin

keeps them unassigned. On the contrary, if the admin assigns them also with the elements

in D f , the data distribution in involved groups will be disrupted. Our strategy is to assign

a meaningless string that does not belong to any D f , such as ‘NULL’, to redundant dummy

records. After encryption, ‘NULL’ will be indistinguishable from other elements. Thus, the

CSP cannot distinguish between real and dummy records. Moreover, ‘NULL’ does not affect

the occurrence of other elements. Note that users and the admin can search the records with

‘NULL’.

In short, the static database can be bootstrapped in four steps. For each field f , the admin

first divides D f into groups. Second, the admin calculates Σ f and Σmax. Third, the admin inserts

Σmax empty dummy records, each of which consists of F ‘NULL’. Finally, for each eiλ+ j ∈ D f ,

the admin randomly picks τi, f −O(eiλ+ j) dummy records with ‘NULL’ in field f , and updates

their f -th ‘NULL’ into eiλ+ j. After padding all the elements, a number of inserted dummy

records might still have ‘NULL’ elements, whereas, they do not affect the defined security

level (we will give the reason when presenting the specific schemes).

It is worth to mention that the value of λ also affects the number of required dummy

records. So when defining λ , the performance requirement and storage limitation should be

considered. For instance, in TPC-H benchmark dataset, there are 1.5 million records in ‘OR-

DERS’ table. For ‘CUSTKEY’ field, there are around 100,000 different elements and their

occurrences range from 1 to 41. For this field, the number of required dummy records for

different λ elements is shown in Fig. 3.1. Specifically, if we set λ = 10,000, i.e., each group

could contain at least 10,000 elements, the records can be divided into 8 groups, and around

0.3 million dummy records are needed in total. When λ is set to 20,000, the records can be

divided into 4 groups, and around 0.7 million dummy records are required totally. When all

the elements are in the same group, around 2.6 million dummy records are required.

30

3.3 Dynamic Databases

The above solution designed for static databases is not sufficient to minimise information leak-

age in dynamic databases. Unlike static databases, dynamic databases still support insert, delete

and update queries once encrypted and uploaded to the CSP. Thus, the data distribution in dy-

namic databases might change over time. The size pattern is safeguarded from the CSP as long

as dummy records can match queries and are indistinguishable from real ones. However, it is

hard to hinder the CSP inferring the search pattern from the size pattern once the data distri-

bution is changed. Specifically, in dynamic databases, it is hard to either ensure the queries

always match the same number of records even for the queries in the same group, or ensure the

queries could match different numbers of records even if the same queries are repeated. For

instance, if the initial database is bootstrapped as done for static databases, when a user inserts

a new record after the bootstrapping, the occurrence of each involved element will increase by

one and be different from that of other elements. Then, the CSP can learn the queries whose

result sizes are different from others must associate with the most recent inserted elements.

Even worse, if the record is injected by the CSP as done in the record-injection attack, the CSP

can learn the underlying keywords in those queries directly. On the contrary, if all the elements

have different occurrences in the initial database, different queries will match different num-

bers of records. However, if there is no insert, delete or update query executed between two

select queries, the CSP can learn which queries are repeated based on their result sizes.

For single-user and SwMr dynamic databases, if the data owner knows the data distribution

and the groups, it can ensure the elements always have different occurrences or ensure the el-

ements in the same groups have the same occurrences by adding or removing dummy records

when executing insert, delete and update queries. However, when the dynamic database sup-

ports multiple users to read and write the records, the situation is more complicated, since it is

more difficult to ensure all the users always have the latest data distribution and group informa-

tion. To prevent the CSP from learning the search pattern from size pattern in MwMr dynamic

databases, we present three possible solutions. The first two solutions ensure the queries in the

same group always match the same number of records, and the third solution ensures all the

queries match different numbers of records even if the same queries are repeated. Note that the

solutions for MwMr can also be applied in SwMr and single-user databases.

3.3.1 Solution 1

The motivation of our first solution is to ensure the queries in the same group always match

the same number of records. The basic idea is fixing the number of groups and the elements

in each group and changing the group thresholds when inserting, deleting or updating records.

Basically, the admin is responsible for setting up the security parameters and bootstrapping the

31

database. Users can execute insert, select, delete and update queries. Meanwhile, users also

need to manage the dummy records when inserting, deleting or updating real records.

Database bootstrapping. The admin first sets up the system by defining the security parame-

ter λ , which defines the minimum number of elements in a group. If the initial database is not

empty, the admin divides the elements in each field into groups and pads them with dummy

records. To minimise the number of required dummy records, the admin could also just put

every λ elements with similar occurrences in the same groups, as done in our solution for static

databases. However, the grouping method could be different and defined based on the require-

ment of specific schemes. We will give different grouping approaches that fit for our schemes

in Chapter 4. In this section, we assume the database has been divided into groups and we

focus on the dummy records management when inserting and deleting records.

To ensure the elements in the same group always have the same occurrence, users need to

know which λ elements are in the same group. Thus, the admin sends each enrolled user the el-

ements in each group. For instance, assume the groups for field f are {{e1, ...,eλ}, ...,{e
(� d f

λ �−1)λ+1
,

..., ed f }}. All the users enrolled in the system stores {{e1, ...,eλ}, ...,{e
(� d f

λ �−1)λ+1
, ..., ed f }}

for each field locally.

If the initial database is empty, the admin could pre-define the groups based on the historical

dataset and publicly available statistics, and then update the groups over time.

Insert query. Assume the inserted record is rcd = (e1, ...,eF), and let gi f , f be the group of

e f , ∀ f ∈ [1,F]. If a user inserts rcd into the database, the occurrence of each element e f will

increase by one. For each f ∈ [1,F], to make e f indistinguishable from other elements in gi f , f ,

our first strategy is to increase the threshold of gi f , f and the occurrences of its other elements

also by one. Specifically, each time when a user inserts a real record rcd = (e1, ...,eF), it

generates λ − 1 dummy records and inserts them into the database together with the real one

in a random order, such that the CSP cannot tell which one of them is real. To increase the

occurrence of other elements in gi f , f , for each field f , the λ − 1 dummy records cover the

other λ − 1 elements in gi f , f . Moreover, the elements in the F groups, except (e1, ...,eF), are

assembled randomly to form the dummy records.

Delete query. If rcd = (e1, ...,eF) is a record to be deleted, instead of removing it from the

database, we set it to a dummy record. In this way, the occurrences of the involved elements

will not be changed. However, if the system never removes records, the database will increase

rapidly. To avoid this, the admin periodically removes the records consisting of F ‘NULL’

from the database. Note that in this process the admin must ensure the elements in the same

groups always have the same occurrences. Specifically, the admin periodically checks if each

element in each group is contained in one dummy record. If yes, for each element, the admin

updates one dummy record containing it to ‘NULL’. As a consequence, the occurrence of all

32

the elements in the same group will decrease by one, but still is the same. When the dummy

records only consist of ‘NULL’, the admin removes them from the database.

The above solution is used to delete a single record. Indeed, a delete query might need

to remove multiple records. Thus, the user cannot issue delete queries to the CSP directly.

Instead, the user first gets the records to be deleted by issuing a select query that has the same

predicate as the delete query, and then updates the returned records to dummy.

Update query. Update queries are performed by deleting the records with old elements and

inserting new records with new elements.

Discussion. In this solution, the number of elements in each group is fixed, which is always

equal to or greater than λ . Therefore, this solution guarantees the security level of the search

pattern. However, this solution suffers from three main disadvantages. The first disadvantage

is that a large number of dummy records are required. As mentioned above, for each insert

query, λ − 1 dummy records should be generated and inserted with the real one. When λ is

large, the size of the database will increase rapidly with insert queries. Second, to generate

dummy records, users have to store the elements in each group, which increases the storage

burden on the user side. In particular, when all the elements only occur once in the database,

the user will have the same storage overhead as the CSP. Thus, this solution is not suitable for

the databases with big |D| (where D = {D1, ...,DF} is the set of all different elements in the

database). Moreover, when the initial database is empty, the occurrence of elements in each

group is 0. If the users insert real records one by one, the rate between inserted real and dummy

records each time is fixed to 1 : λ −1. As a result, the CSP can learn there are 1
λ real records

in the database and in each group. In the following, we give two possible ways to eliminate the

three disadvantages.

The first solution is that, instead of inserting real records one by one by users, the admin

aggregates records from users, generates dummy records and uploads them to the database in

batch periodically. By doing so, obviously, the users do not need to store the elements of each

group, and only the admin needs to. Moreover, the number of required dummy records can

be reduced. In addition, the rate between real and dummy records in the database and in each

group can be upset even when the initial database is empty. Thus, the CSP cannot infer the

number of real records in the database and in each group. We give the reasons in the following.

To protect the search pattern, the occurrence of the elements in the same group should

always have the same occurrence, which means the elements in the same group should increase

or decrease by the same number simultaneously. If the real records to be inserted cannot ensure

that, a number of dummy records are required. Therefore, the more elements in the same group

involved by the real records in each batch, the fewer dummy records are needed to cover the

uninvolved elements. For instance, assume n real records {(e1,1, ...,e1,F), ...,(en,1, ...,en,F)}

33

are to be inserted together in a batch, where n ≥ 1. In the worst case, (e1,1, ...,e1,F) = ... =

(en,1, ...,en,F), i.e., the n records have the same element for each field. In other words, for each

field f , the n records only involve one group gi, f and cover one element in gi, f . In this case,

the occurrence of the involved element increases by n, Thus, n dummy records are required

to increase each uninvolved element in gi, f also by n. Since, (λ − 1) elements in gi, f are not

covered, the admin has to generate n(λ −1) dummy records in total, which is equivalent to the

number of required dummy records when inserting the n real records one by one. However,

in the best case, for each field f , the n records could only involve one group gi, f and cover

n different elements in gi, f . That is, {e1, f , ...,en, f } are different elements in group gi, f for all

f ∈ [1,F]. In this case, the occurrence of each involved element increases by 1. Then, only

λ −n dummy records are needed in total to increase the occurrence of other λ −n elements in

gi, f by one. In general, the number of required dummy records ranges between the best and

worst cases, which must be less than that when inserting the real records one by one. Moreover,

the number of dummy records inserted each time changes with the data distribution of the real

records to be inserted, making the rate between real and dummy records variable.

The second method is to keep the occurrence of each inserted element e f unchanged by

updating one dummy record with e f to ‘NULL’, instead of increasing the occurrences of other

elements. Specifically, before inserting rcd, for each element e f ∈ rcd, the user first checks if

there is a dummy record containing e f . If yes for all the F elements in rcd, the user inserts

the record. Then, for each e f , the user updates one of the dummy records with e f to ‘NULL’.

Otherwise, the user increases the occurrences of elements in involved groups as above.

3.3.2 Solution 2

Our second solution is also designed for MwMr dynamic databases. In particular, this method

is used to manage the dummy records when grouping the database based on the element occur-

rences. Comparing with the first solution, this solution aims at reducing the storage overhead

on users and the number of required records by weakening the security guarantee for the search

pattern. The main idea is to fix the thresholds for all groups but migrate elements among groups

by changing their occurrences.

Database bootstrapping. As done in the first solution, if the initial database is not empty,

the admin defines λ and the groups, and then pads the occurrence of elements into their group

thresholds. The difference is the admin only sends all the group thresholds to enrolled users.

When the initial database is empty, the admin pre-defines the keywords universe and group

thresholds for each field based on an available historical dataset or public statistics.

Insert query. When inserting rcd = (e1, ...,eF), the motivation of the user is to ensure the

occurrences of (e1, ...,eF) will not be unique. The main idea is to migrate (e1, ...,eF) to new

34

groups by changing their occurrences and generating a certain number of dummy records same

as rcd. Specifically, the user first gets O(e f) by selecting all the records with e f , for each

f ∈ [1,F]. Recall that the user stores all the group thresholds. Second, for each e f , the user

finds the group gmin f , f whose threshold:

τmin f , f = min{τ j f , f |τ j f , f > O(e f),1 ≤ j ≤ �d f

λ
�}

(� d f
λ � is the number of groups in field f and d f = |D f |). In short, τmin f , f is the minimum

threshold that greater than O(e f). Third, the user generates:

m = max{τmin f , f −O(e f)|1 ≤ f ≤ F}

dummy records. For each field f , τmin f , f −O(e f) of the dummy records will be assigned with

e f , and the other m− (τmin f , f − τi f , f) dummy records will be assigned with ‘NULL’. Finally,

the user inserts the m+ 1 records into the database in random order. As a consequence, e f is

migrated to gmin f , f for each f ∈ [1,F].

Delete query. When deleting rcd = (e1, ...,eF), the user sets it to dummy. In this solution,

redundant dummy records are also deleted in two phases. Specifically, the admin first period-

ically checks the occurrence of each element in each group. Assume the real occurrence and

occurrence of e f are Oreal(e f), and O(e f), respectively. Second, the admin finds the minimum

group threshold that greater than Oreal(e f), i.e.,

τmin f , f = min{τ j f , f |τ j f , f > Oreal(e f),1 ≤ j ≤ �d f

λ
�}

If τmin f , f < O(e f), O(e f)− τmin f , f dummy records with e f will be updated to ‘NULL’ in field

f . Meanwhile, the admin periodically removes records with F ‘NULL’.

Update query. Update queries are performed by deleting the records with old elements and

inserting new records with new elements.

Discussion. In this solution, the number of required dummy records relies on the difference

between group thresholds, which could be less than λ . To further reduce the number of dummy

records, as mentioned above, the admin can accumulate records and insert them together in one

batch, or ensure the occurrence of inserted elements unchanged by updating certain dummy

records to ‘NULL’. Another important aspect is that this solution adds much less overhead on

the user side. Basically, for each group, the users only store the threshold, which is significantly

smaller than the elements set of each group. Whereas, the number of elements in each group

changes over time, which could be smaller or greater than λ over time, making the number of

indistinguishable queries in each group also changes over time. In particular, when a group

35

contains only one element, the CSP can tell the precise times it has been requested since its

occurrence is distinct from others. Recall that the first solution can ensure each group always

has λ elements. Therefore, this solution achieves a lower security level than the first solution.

3.3.3 Solution 3

In the first two solutions, the strategy to break the link between the search and size patterns is

ensuring a set of queries always match the same number of records. On the contrary, our third

solution aims at ensuring the queries could match different numbers of records even if the same

queries are repeated. The main idea is inserting a number of dummy records to hide the data

distribution and refreshing the dummy records after executing each query. This solution can

also be utilised for single-user, SwMr, and MwMr databases.

System setup. The admin first populates D f for each field and sends it to each enrolled

user. Second, the admin defines a parameter δ to control the rate of dummy records in the

database. If the initial database is not empty, the admin generates N� dummy records during

the bootstrapping, where N� ∈ [1,δN] and N is the number of real records in the database. The

elements for each field f of dummy records are picked from D f randomly.

Insert query. When inserting records, users also generate a number of random dummy records

and insert them together with real ones in random order. Specifically, if there are n real records

to be inserted, the user generates m dummy records, where m ∈ [1,δn]. This solution does not

adopt the strategy of groups or pad the occurrence of each element to a certain value. Thus,

for each field f , the f -th elements of dummy records can be picked from Df randomly. In this

case, different queries could match the same or different numbers of records. However, when a

query is repeated, it matches the same number of records. The CSP can still guess the queries

with the same result size could be equivalent with a high probability. To solve this issue, the

dummy records should be refreshed after executing each query. In Section 2.4.3, we mentioned

that it is necessary to shuffle and re-randomise searched records after executing each query by

a third entity to protect the access pattern. The third entity can also be leveraged to refresh

the dummy records. Specifically, for each dummy record, the third entity randomly assigns F

new elements to it, making the data distribution of dummy records updated. Consequently, if

a query is repeated, the result size could be different. Then, the CSP cannot tell if the queries

matching the same number of records are equivalent or not.

Delete query. This solution does not need to consider the occurrence of elements. When

executing delete queries, the matched records, including both the real and dummy records, can

be deleted directly.

Update query. Update queries are performed by deleting the records with old elements and

inserting new records with new elements.

36

Table 3.1: Comparison of the solutions for managing dummy records.

Solution Property User Storage #Dummy
Records Security

Solution 1 Variable group thresholds Group elements Large λ
Solution 2 Variable group elements Group thresholds Medium Variable
Solution 3 No group Keywords universe Large –

Discussion. In this solution, the dummy records are generated randomly. Thus, it simplifies

the dummy records management on both the admin and users. However, this solution also

requires a significant number of dummy records to protect the search pattern. Ideally, for each

encrypted query EQ searching over field f , its interested keyword should be an element in Df

with the same probability. Assume e1 and e2 are two elements in D f , and the number of real

records containing them are O(e1) and O(e2), respectively. Formally, if the interested keyword

involved in EQ is e1, there should be x1 = |EQ(EDB)|−O(e1) dummy records contain e1.

Similarly, x2 = |EQ(EDB)|−O(e2) dummy records contain e2 if EQ involves e2. To fully

protect the search pattern, the two events should happen with very similar probabilities, which

means | Cx1
N�

|D f |N� − Cx2
N�

|D f |N� | has to be negligible. To achieve this, N� must be big enough, meanwhile,

x1 and x2 must be very close. That is, this solution requires a large number of dummy records,

and could only protect the search pattern of the queries with approximate result sizes.

3.3.4 Conclusion

In Table 3.1, we summarise and compare the above three solutions based on their storage

overhead on the user side, the number of required dummy records and the security level of the

search pattern. The first solution ensures a higher level of security, but requires more dummy

records and put the most storage overhead on the user side than the other two solutions. In the

second solution, both the required dummy records and the storage overhead on the user side

are optimised, yet the security guarantee varies with queries, which could be worse than the

first solution. The last solution does not group the data, thus it simplifies the dummy records

generation on users and the admin. However, it puts the same storage overhead on the user

side as the first solution, which is much bigger than solution 2. The security level of the search

pattern in this solution varies with the number of inserted dummy records. That is, the more

records inserted, the harder for the CSP to infer the search pattern based on the size pattern and

communication volume. Above all, all the three solutions have advantages and disadvantages.

Which solution should be used can be determined based on the application requirements. For

instance, the applications with resource-constrained user side can select the last solution, and

the applications require a higher level of security can use the first solution.

Investigating a better way to break the link between the size and search patterns for dynamic

37

databases with minimum dummy records is still an open problem. In the rest of this thesis, we

integrate the first solution with our proposed schemes, and assume the elements in the same

group always have the same occurrence. Moreover, the solution might be adjusted slightly to

adapt our proposed SE schemes.

38

Chapter 4

Hybrid Cloud Based Solution:
ObliviousDB

A hybrid cloud deployment is a cloud computing environment that combines on-premises pri-

vate cloud platforms with public cloud services. By allowing workloads to be moved between

private and public clouds as computing needs and costs change, the hybrid cloud apporach gives

businesses greater flexibility and more data deployment options. Moreover, the private cloud

could be considered as a trusted entity, because it is inherently managed by the organisation,

where sensitive data can be stored and processed without any extra layer of security. According

to the latest report by Rightscale [44], the hybrid cloud computing approach is getting more

popular among large enterprises.

In this chapter, we present ObliviousDB, our SE scheme that exploits hybrid cloud environ-

ments to minimise information leakage and thwart inference attacks. Specifically, ObliviousDB

not only lessens the leakage of search, access, and size patterns, but also ensures the forward

and backward privacy of records. Moreover, by integrating the key management mechanism

given in [4, 45], ObliviousDB allows multiple users to read and write the database, while it

does not need to update the keys or re-encrypt records in case of user revocation. Basically,

in ObliviousDB, the public infrastructure is used for storing all the records while the private

infrastructure is used mainly for running our Oblivious Private Service (OPS), a service for

maintaining metadata information about the records stored in the public infrastructure. The

OPS plays a major role in ensuring the confidentiality of the data and manages the data struc-

tures for achieving search efficiency. In terms of its functionality, the OPS is similar to the

proxy server used in CryptDB [17]. However, unlike CryptDB, we have designed the OPS to

be robust against attacks, i.e., a compromised OPS will not reveal sensitive data to adversaries.

In summary, ObliviousDB makes the following contributions in this chapter:

1. ObliviousDB minimises the information leaked to the public CSP when executing queries

39

by (i) dynamically re-randomising the encrypted data, (ii) shuffling the locations of

records within the database, and (iii) introducing and varying a number of dummy records,

necessary for achieving the search and access pattern privacy.

2. ObliviousDB supports both forward and backward privacy by randomising data and

query through the use of fresh nonces. In this way, even if the CSP stores a search

query, it cannot be matched with new data. Likewise, new queries cannot be executed

over deleted records.

3. ObliviousDB is a MwMr SE scheme that supports flexible multi-user access. Moreover,

revoking users does not require key regeneration and data re-encryption.

4. To show the feasibility of our approach, we have implemented ObliviousDB and mea-

sured its performance.

The rest of this chapter is structured as follows. In Section 4.1, we give the system and

threat model and describe ObliviousDB in high-level. The design details of ObliviousDB is

explained in Section 4.2. Next, we analyse the security of ObliviousDB in Section 4.3. The

prototype implementation and performance evaluation are given in Section 4.4. In Section 4.5,

we review related work in the literature. Finally, we conclude ObliviousDB in Section 4.6.

40

�������������������

�����������������������������

�����
����������������������������

�� �����������������

������������������������

������������

��� ���

��

��

����� �������� ���������

��

Fig. 4.1. An overview of ObliviousDB.
The admin is responsible for running setup (Step I then Step II). A user can insert, delete and
update the data (Step 1a) or execute a select query (Step 1b) to receive matching records (Step

3). To control information disclosure, the OPS transforms the query (Step 2) to perform the
search followed by an oblivious algorithm (Step 4).

4.1 Overview of ObliviousDB

4.1.1 System Model

The system involves four main entities shown in Fig. 4.1:

• Administrator (admin): The admin is responsible for setting up the database, managing

users, and regulating access control policies.

• User: It represents an authorised user who can execute select, insert, update and delete

queries over encrypted data. After executing encrypted queries, a user can retrieve the

result set, if any, and decrypt it.

• Oblivious Private Service (OPS): It provides greater security and search efficiency. It

serves between users and the CSP. To hide sensitive information about queries, it pre-

processes the queries submitted by the user. To improve performance, it manages index-

ing information. Technically, the OPS is part of the private cloud in the hybrid cloud

environment, which is linked with a more powerful public cloud infrastructure.

• Cloud Service Provider (CSP): A CSP is part of the public cloud infrastructure pro-

vided by a cloud service provider. It stores the encrypted data and access control policies

and enforces those policies to regulate access to the data.

Threat Model. We assume the admin is fully trusted. Users are only considered to keep their

keys (and decrypted data) securely. The OPS is deployed in the private cloud, which is owned

by the organisation. Hence, we assume the OPS is also trusted. However, it is responsible

41

for communicating with the external world. Thus, it could be the target of attackers and get

compromised, which means the data stored on the OPS could possibly be exposed to attackers.

We consider that the CSP is honest-but-curious. More specifically, the CSP would honestly

perform the operations requested by the admin and users according to the designated protocol

specification; however, it is curious to analyse the stored and exchanged data so as to learn ad-

ditional information. We assume that the CSP will not mount active attacks, such as modifying

the message flow or denying access to the database.

In this work, we assume that there are mechanisms in place for data integrity and avail-

ability. Last but not least, access policy specification is out of the scope of this work, but the

approach introduced in [4, 88] can be utilised in ObliviousDB.

4.1.2 Proposed Approach

ObliviousDB represents a practical encrypted scheme for an outsourced dynamic database with

controllable leakage. Using ObliviousDB, queries can be executed without the CSP learning

the search, access, and size patterns. The search pattern is protected by using a semantically

secure algorithm. The access and size patterns are protected by inserting dummy records and

running the oblivious algorithm explained in Section 4.2.5. To support forward and backward

privacy, ObliviousDB uses fresh nonces to randomise inserted data and queries. To achieve

efficiency, ObliviousDB divides the data into groups and build an index for each group. In

this work, we consider dynamic databases. Solution 1 given in Chapter 3 is combined with

ObliviousDB to manage the dummy records when inserting, deleting, or updating records.

In ObliviousDB, the admin initialises the system by setting up the OPS (Step I) and the

CSP (Step II) as illustrated in Fig. 4.1. After the system is initialised, the admin can add users

and generate keying material for them. Using her own key, a user encrypts and sends real and

dummy records to the OPS (Step 1a). The OPS first rewrites the records and then sends it to the

CSP (Step 2). Another user can perform a select query by encrypting it using her own key (Step

1b). The OPS rewrites the select query to be able to match the records stored in the CSP. Before

sending the matched records to the user, the CSP pre-decrypts them in a way without learning

the plaintext. However, the returned matched records will contain both real and dummy records

(Step 3). Using flags, the user filters out the dummy records and decrypts real records using her

own key. Meanwhile, the searched records are sent to the OPS for shuffling and re-randomising

(Step 4).

42

Table 4.1: Data representation in ObliviousDB.

(a) Staff

Name Age
Alice 25
Anna 30
Bob 27
Bill 25
Bob 33

Baker 25

(b) GDB on the OPS

GID Nonce Index List Elements
(1,g1,1) n1,1 {1,2} E1,1 = {Hs(Alice),Hs(Anna)}
(1,g2,1) n2,1 {3,4,5,6,7,8} E2,1 = {Hs(Bob),Hs(Bill),Hs(Baker)}
(2,g1,2) n1,2 {1,3,4,6,7,8} E1,2 = {Hs(25),Hs(27)}
(2,g2,2) n2,2 {2,5} E2,2 = {Hs(30),Hs(33)}

(c) EDB on the CSP

ID 1 2
1 SEn1,1(Alice) DE(Alice) SEn1,2(25) DE(25)
2 SEn1,1(Anna) DE(Anna) SEn2,2(30) DE(30)
3 SEn2,1(Bob) DE(Bob) SEn1,2(27) DE(27)
4 SEn2,1(Bill) DE(Bill) SEn1,2(25) DE(25)
5 SEn2,1(Bob) DE(Bob) SEn2,2(33) DE(33)
6 SEn2,1(Baker) DE(Baker) SEn1,2(25) DE(25)
7 SEn2,1(Bill) DE(xyz) SEn1,2(27) DE(∗)
8 SEn2,1(Baker) DE(xyz) SEn1,2(27) DE(∗)

Table (a) is a sample table viewed by users. Table (b) is the group information stored on the OPS. For
the first field, we have GE(Alice) = GE(Anna) = g1,1 and GE(Bob) = GE(Bill) = GE(Baker) = g2,1.
For the second field, we have GE(25) = GE(27) = g1,2 and GE(30) = GE(33) = g2,2. Each group has
a nonce to ensure forward and backward privacy, a list of IDs indicating the records in the group, the
occurrence threshold, and its elements. The CSP stores Table (c), where each value is encrypted with
SE and DE for data search and retrieval, respectively. Each SE value is bound with the nonce of its

group. The last two records, consisting of normal SE and fake DE parts, are dummy.

43

4.2 Solution Details

4.2.1 Setup

The system is set up by the admin by taking as input a security parameter k. The output is a

prime number p, three multiplicative cyclic groups G1, G2 and GT of order p, such that there

is a “Type 3” bilinear map [89] e : G1 ×G2 → GT , which has the properties of bilinearity,

computability and non-degeneracy, but there is no symmetric bilinear map defined on G1 alone

or G2 alone. Let g1 and g2 be the generators of G1 and G2, respectively. The admin chooses

a random x from Zp and returns h = gx
1. Next, it chooses a collision-resistant keyed hash

function H : {0,1}k × {0,1}∗ → {0,1}l , and a random key s for H. It also initialises the

key store managed by the CSP. That is, KS ← φ . Finally, it publishes the public parameters

Params= (e,G1,G2,GT , p,g1,g2,h,H) and keeps securely the master secret key MSK = (x,s).

Building on top of the key management approach given in [4, 45], ObliviousDB supports

multi-user access with efficient user registration and revocation. Specifically, when the user

useri joining the system, the admin splits MSK into two values xi1 and xi2, where x = xi1 + xi2

mod p and xi1,xi2 ∈ Zp. Then, the admin transmits KUi = (xi1,s) and KSi = (i,xi2) securely to

useri and the CSP, respectively. The CSP adds KSi to its key store: KS ← KS ∪KSi . With KUi ,

useri could issue a query. For revoking a user, we just need to remove KSi on the CSP.

4.2.2 Group Generation

To protect the search and size patterns, if the initial database is not empty, ObliviousDB also

divides the data into groups and pads the elements in the same groups into the same occurrence

with dummy records. By doing this, the CSP cannot tell if the queries in the same group are

searching for the same terms or not. However, after searching, the CSP can still learn if the

records and queries are in the same group or not from the size pattern. To avoid this, the admin

can pad all the elements in each field into the same occurrence. However, a large number of

dummy records are required in this case. In this work, we do not aim to protect the group

information from the CSP since the countermeasure is expensive.

Considering the CSP can learn the group information from the size pattern, ObliviousDB

allows the CSP to only search a group of records for each query, rather than the whole database.

By doing so, the query can be processed more efficiently without leaking additional information

to the CSP. Yet, in this case, the CSP needs to know which group of records should be searched

for each query before searching. To this end, on the one hand, each group should have a

unique identifier, and the group identifier of each query should be known. On the other hand,

ObliviousDB should build indices for the groups.

As mentioned in Section 3.3.1, if all the users store the elements in each group locally,

44

they can easily know the group identifier for each query. However, storing the elements in

each group could put heavy storage overhead on the users. In particular, if each element only

occurs once, all the user will have the same storage size as the CSP. Moreover, if the groups are

updated by the admin or one user, it is hard to synchronise the storage on all the users in MwMr

applications. Fortunately, the OPS is trusted in ObliviousDB. Therefore, the admin could store

the elements in each group in the OPS and allows the users to access when required. Moreover,

in case the OPS is compromised, the elements should be hashed or encrypted.

As an alternative, instead of grouping the elements based on their occurrences, the admin

could generate the groups with a Pseudo-Random Function (PRF) GE : {0,1}k ×{0,1}∗ →
{0,1}∗. For instance, the admin could generate the group identifier of e by computing GE(e)←
LSBb(Hs(e)), where LSBb gets the least significant b bits of its input. The elements with the

same GE(e) values are in the same groups. In this case, the number of elements in each group

might be different, and the occurrences of the elements in the same group might have big

differences. Note that the GE function can be modified based on the data distribution. For

instance, to ensure each group contains no less than λ elements, b can be smaller. The issue

is more dummy records are required than the case that groups the elements based on their

occurrences. The benefit of doing so is that the users do not need to store the elements in each

group, or inquire the OPS about the group identifier of each query. Moreover, since GE is

deterministic, the elements never change their groups. Considering the storage on the CSP is

cost-effective, in ObliviousDB the admin and users use GE to generate group identifiers for

records and queries. However, based on the data distribution and data types in the database, the

data could also be grouped in other ways. The key point is users should be able to know the

group identifier of the elements in records and queries.

Database Bootstrapping. After setting up the system, the admin bootstraps the database.

First, the admin populates D f for each field f , and then generates the group identifier GE(e)

for each element e. For each group GE(e), the admin counts the occurrences of its elements and

takes the highest occurrence as its threshold τ . Finally, as described in Section 3.3.1, the admin

generates dummy records to ensure the elements in each group GE(e) occurs in τ records.

To ensure search efficiency, the admin also builds an index for each group GE(e) by col-

lecting the IDs of the real and dummy records containing the elements in GE(e). The index

allows the CSP to search only the records in the group of each query, rather than the whole

database.

ObliviousDB achieves both forward and backward privacy. That is, even if the CSP holds

old queries, they cannot match new records. Similarly, if the CSP holds deleted records, they

cannot match new queries. To achieve both properties, our solution is to blind both the records

and queries with one-off nonces. Only the records and queries blinded with the latest nonces

could match. Since the records are always searched group by group, the admin generates a

45

Algorithm 1 RcdEnc(rcd, f lag,s)
1: if tag = 1 then
2: for each element e f ∈ rcd do
3: σ f ← Hs(e f)
4: GE(e f)← PRF(σ f)

5: r $← Z∗
p,SE(e f)← (u1 = gr

1,u2 = gσr
1)

6: r $← Z∗
p,DE(e f)← (v1 = gr

1,v2 = hre f)
7: if tag = 0 then
8: for each element e f ∈ rcd do
9: σ f ← Hs(e f)

10: GE(e f)← PRF(σ f)

11: r $← Z∗
p,SE(e f)← (u1 = gr

1,u2 = gσr
1)

12: DE(e f)← (v1
$←G1,v2

$←G1)
13: return Ercd = ((SE(e1),DE(e1)), ..., (SE(eF), DE(eF)), tag) and Grcd = ((GE(e1),σ f), ...,

(GE(eF),σ f))

nonce for each group and blinds the elements in the same group with the same nonce. After

executing a query over a given group, a new nonce will be generated and used to re-blind

the searched records accordingly. The technical details about the nonce blinding are given in

Section 4.2.4.

In ObliviousDB, the group information is called GDB, and will be stored and managed by

the OPS. Table 4.1 illustrates an example of GDB. Let us assume that there is a table Staff

(Table 4.1(a)) containing Name and Age fields. Table 4.1(b), shows the group information of

the example table. For different fields, the group information can be stored in different tables.

In the shown example, we use the pair (f ,gi, f) to identify the groups in field f . Specifically,

for each group, GDB stores a nonce, a list of identifiers of the records belonging to this group,

and its elements set E. As mentioned above, the nonce is used to blind records and queries.

When a user issuing a query, the OPS sends to the CSP the corresponding list of records IDs

to be searched. After the searching, the OPS generates a new nonce and re-blinds the searched

records. E will be retrieved by users when generating dummy records. In case the OPS is

compromised, only the keyed hash value of each element is stored in E.

4.2.3 Data Encryption

After building the group information, the admin encrypts both the real and dummy records.

The details of record encryption are shown in Algorithm 1 RcdEnc and Algorithm 2, Nonce-

Blind.

RRRcccdddEEEnnnccc(((rrrcccddd,,, fff lllaaaggg,,,sss)))→→→ EEErrrcccddd. RcdEnc takes the record rcd = (e1, ...,eF), a flag tag mark-

ing if rcd is real or dummy and the secret key s as the inputs, and outputs the encrypted record

46

Algorithm 2 NonceBlind(Ercd,Grcd,GDB,counter)
1: Ercd.ID ← counter
2: f lags[Ercd.ID]← Ercd.tag
3: counter++
4: for each GE(e f) ∈ Grcd do
5: if (f ,GE(e f)) ∈ GDB then
6: n ← GDB(f ,GE(e f))
7: Ercd.SEn(e f)← (u1 ← un

1,u2)
8: if Hs(e f) �∈ GDB(f ,GE(e f)).E then
9: Add Hs(e f) to GDB(f ,GE(e f)).E

10: else
11: n $← Z∗

p
12: Ercd.SEn(e f)← (u1 ← un

1,u2)
13: GDB(f ,GE(e f))← (n,{ID},{Hs(e f)})
14: return Ercd = (ID,(SEn(e1),DE(e1)), ... , (SEn(eF), DE(eF))), counter and GDB

Ercd and the group information Grcd of rcd. In particular, tag = 1 when rcd is real, otherwise

tag = 0. For both real and dummy records, the admin first generates the group information for

each element by running GE(e f). Each element in real records is encrypted under Searchable

Encryption (SE) (Line 5) and Data Encryption (DE) (Line 6), where SE makes the encrypted

data searchable, and DE ensures the confidentiality of the retrievable data. Both DE and SE

are semantically secure because of the random values r, which prevents the CSP learning any

frequency information in EDB. Note that for real records, only the public key h is used in

DE, which means an attacker could also execute DE. To defend against this attack, we assume

that there is an authentication mechanism in place to authenticate users. Only the records from

authenticated users and admin will be accepted by the OPS and CSP.

To ensure the dummy records could match queries, their SE parts are generated in the same

way as real records (Line 11). However, since the users do not retrieve data from dummy

records, their DE parts are assigned random values (Line 12). Recall that in Section 3.1, we

mentioned that the dummy records should be filtered out easily by users (R4). To meet this

requirement, the OPS also maintains a list of indices that contain dummy records (not shown

in Table 4.1(b)); this could be an N-bit string f lags, where N is the total size of the database

on the CSP. We have f lags[id] = 0 or 1 if the record is a dummy or real record, respectively.

NNNooonnnccceeeBBBllliiinnnddd(((EEErrrcccddd,,,GGGrrrcccddd,,,GGGDDDBBB,,,cccooouuunnneeerrr))) →→→ (((EEErrrcccddd,,,cccooouuunnnttteeerrr,,,GGGDDDBBB))). Moreover, to ensure

both the forward and backward privacy, the admin also runs NonceBlind to blind the SE parts.

NonceBlind takes Ercd, Grcd, GDB and counter as the inputs and returns the blinded records

Ercd, updated counter and GDB. The number counter is kept by the OPS, and it is used to

count the total number records stored in the CSP and assign ID to each Ercd (Line 1, Algorithm

2). After determining the ID for Ercd, the admin assigns f lags[Ercd.ID] with Ercd.tag, such

users can learn if the ID-th record stored in the CSP is real or dummy (Line 2). With Grcd

47

and GDB, the admin can get the nonce n for each SE part, and then blinds it with n (Line 7).

Note that after bootstrapping the database, users might insert new elements that not in existing

groups into the database. For a new group, a new nonce n $← Z∗
p will be generated, meanwhile,

its index and elements set will be built as well (Line 11 - 13).

After encrypting all the records, the admin uploads the GDB to the OPS, and uploads the

encrypted database EDB to the CSP. The encrypted Staff table is illustrated in Table 4.1(c). In

EDB, each encrypted record Ercd is identified with a unique ID, and each element is encrypted

with both SE and DE. The last record in Table 4.1(c) is a dummy and its DE parts are random

strings.

4.2.4 Query Encryption and Execution

Algorithm 3 Query(Q,s)

1: useri(Q):
2: σ ← Hs(Q.e)
3: GE(Q.e)← PRF(σ)
4: EQ.type ← Q.type
5: EQ.operator ← Q.operator
6: EQ. f ← Q. f
7: r ← Z∗

p,EQ.e∗ ← (t1 = gr
2, t2 = gσr

2)
8: Send EQ and GE(Q.e) to the OPS

9: OPS(EQ,GE(Q.e)):
10: (n, IL)← GDB(EQ. f ,GE(Q.e))
11: EQ.e∗ ← (t1 ← tn

1 , t2)
12: Send (IL,EQ, i) to the CSP, where i is the identifier of the user
13: Send f lags to the user

14: CSP(IL,EQ, i):
15: SR ← /0
16: (t1, t2)← EQ.e∗

17: for each id ∈ IL do
18: (u1,u2)← EDB(id,EQ. f ∗).SEn
19: if e(u1, t2) = e(u2, t1) then
20: SR ← SR∩EDB(id)
21: for each DE(e) = (v1 = gr

1,v2 = hrd) ∈ SR do
22: DE �(e)← (v1,v�2 = v2 ∗ v−xi2

1 = gxi1r
1 e), where xi2 is the CSP side key for useri

23: Send SR to useri

In this scheme, we focus on the simple equality query only with one predicate, e.g., ‘select

* from Staff where name=Alice’. The query with multiple predicates can be performed by

checking each record with the predicates field by field. To support range queries, we use the

same approach presented in [90]. In the following, we give the details for processing one single

48

equality predicate. Every query executed in ObliviousDB is performed with the cooperation of

the user, the OPS, and the CSP. The details of the steps performed by each entity are described

in Algorithm 3.

QQQuuueeerrryyy(((QQQ,,,sss)))→→→ SSSRRR. When issuing a query Q = (type, f ,operator,e), it is first encrypted by

the user (Lines 1-8, Algorithm 3). Specifically, the user first generates the group of Q.e by

computing GE(Q.e). Then, it encrypts Q with KUi . Recall that we do not make effort to protect

the query type, operator and the field pattern from the CSP. Thus, the user does not encrypt

them, and only encrypts the interested keyword Q.e. Formally, Q.e is randomised with SE.

Since SE is semantically secure, the CSP is unable to infer the search pattern from the encrypted

keyword EQ.e∗. Finally, the user sends both the encrypted query EQ = (type, f ,operator,e∗)

and its group GE(Q.e) to the OPS.

Given GE(Q.e) and EQ, the OPS first gets its nonce n and index IL, and then blinds EQ.e∗

with n (Line 9 - 12). After that, the OPS sends EQ, IL, and the identifier of the useri to the CSP.

Meanwhile, the OPS sends f lags to the user so that the user can filter out dummy records.

In the next step, the CSP checks each record in IL with EQ.e∗ by performing the pairing

map operation (Lines 17 - 20). Assume the searched data element is SEn(e) = (u1 = gr�n�
1 ,u2 =

gσ �r�
1) and the encrypted keyword is EQ.e∗ = (t1 = grn

2 , t2 = gσr
2). The equality check between

them is performed by checking whether e(u1, t2) = e(u2, t1). Formally,

e(u1, t2) = e(u2, t1) ⇐⇒ e(gr�n�
1 ,grσ

2) = e(gr�σ �
1 ,grn

2) ⇐⇒ e(g1,g2)
r�n�rσ = e(g1,g2)

rnr�σ �

When σ = σ � and n = n�, the equality holds, while inequality holds with negligible probability

if σ �= σ � and n �= n�. That is, the record rcd matches the query Q only when Q.e = rcd.e f

and they are blinded with the same nonce as well. Once the matched records are found, the

CSP pre-decrypts their DE parts with useri’s CSP side key xi2 (Line 22). The search result SR

is sent to useri. Yang et al. introduce a similar method to perform the equality check for SE

schemes in [91]. However, their method leaks the search pattern and frequency information of

records to the CSP, since the pairing map they use is symmetric. That is, the CSP could still

infer if they are the same or not by running the bilinear map operation between two records or

two queries, although they are encrypted with a probabilistic algorithm.

Finally, with f lags, the user filters the dummy records out, and decrypts the real records

with her user side key xi1. Specifically, the user checks if each returned record Ercdid is real or

dummy by checking if f lags[id] = 1. If yes, the record is real, and its DE � =(v1 = gr,v�2 = gxi1r
1)

is decrypted with xi1 by computing v�2 ∗ v−xi1
1 = gxi1r

1 e∗g−xi1r
1 = e.

Discussion. In ObliviousDB, if the CSP colludes with a user, they could recover the master key

x. To withstand this attack, we can split the master key MSK into three shares (KUi ,KSi ,KPi),

and distribute the third share KPi to the OPS. In this case, data retrieval has to be performed in

49

three rounds of decryption. That is, the OPS should perform the second round of decryption

with KPi after filtering out the dummy records. In this case, the collusion between any two

of the entities is unable to recover the master key, unless the user compromise the OPS, and

colludes with the CSP.

4.2.5 Oblivious Algorithm

Algorithm 4 Oblivious(EQ. f ,GE(Q.e))

1: (n, IL)← GDB(EQ. f ,GE(Q.e))
2: Ercds ← EDB(IL) {Get from CSP all the records indexed by IL}
3: n� $← Z∗

p, GDB(EQ. f ,GE(Q.e)).nonce ← nn�

4: for each record Ercd ∈ Ercds do
5: SEn(eQ. f) = (u1 ← un�

1 ,u2)
6: for each (SEn(e),DE(e)) pair in Ercd do
7: r $← Z∗

p,SEn(e) = (u1 ← ur
1,u2 ← ur

2)

8: r $← Z∗
p,DE(e) = (v1 ← vr

1,v2 ← vr
2)

9: Shuffle Ercds and upload it to CSP
10: Shuffle f lags accordlingly
11: Update the indices of affected groups

To hide the access pattern and ensure forward and backward privacy, in the oblivious al-

gorithm (Algorithm 4), the OPS shuffles and re-randomises all the records included in the

searched group every time a query is executed.

To ensure a high level of security, we shuffle all the records in the searched group. In this

case, the CSP can only recognise if two queries are performed within the same group or not.

To improve the performance of the system, the number of records to be shuffled can be reduced

but at the cost of security guarantees. Note that, at this stage, the user has already obtained the

search results from the CSP and does not need to wait for the shuffle operation to be completed.

OOObbbllliiivvviiiooouuusss(((EEEQQQ... fff ,,,GGGEEE(((QQQ...eee))))))→→→ EEErrrcccdddsss. The OPS first gets all the searched records from the

CSP. Second, the OPS generates a new nonce and updates its GDB. Then, the OPS re-blinds

the searched SE of each record with the new nonce (Line 5). Consequently, the queries blinded

with previous nonces cannot match the re-blinded records. Similarly, a new query blinded with

the latest nonce cannot match deleted records. That is, both forward and backward privacy are

ensured.

In case the CSP could tell if any two queries in the same group matching the same records

or not, the OPS also shuffles and re-randomises both the SE and DE parts of all the searched

records. Specifically, for each element in searched records, the OPS re-randomises its SE and

DE parts (Line 6 - 8). After that, the OPS shuffles all the searched records and sends them back

to the CSP (Line 9). Because of the shuffling and re-randomising, if the same query is executed

50

again, the search result will be totally different from the previous ones in terms of the storage

locations on the CSP and ciphertext. Thus, the CSP is unable to infer if different search results

contain the same records or not, i.e., the access pattern is protected.

Note that, when shuffling the records, f lags and the indices of the groups in other fields

will be affected. Therefore, the OPS also needs to shuffle f lags and update the indices of

affected groups accordingly.

4.2.6 Database Updating

Algorithm 5 Insert(rcd,s)

1: useri(rcd):
2: U pdate ← /0, Insert ← /0, sign ← 0
3: (Ercd,Grcd)← RcdEnc(rcd,1,s)
4: Insert ← (Ercd,Grcd)
5: for each e f ∈ rcd do
6: (SR f , f lags)← Query(e f)
7: if All the records in SR f are real then
8: sign = 1, Break;
9: if sign = 0 then

10: for f = 1 to F do
11: Assume Ercdid ∈ SR f is dummy, Ercdid .e∗f ← SE(NULL)
12: U pdate ←U pdate∪Ercdid
13: else
14: for each (f ,GE(e f)) ∈ Grcd do
15: E f ,GE(e f) ← GDB(f ,GE(e f))

16: M = max{|E f ,GE(e f)| | 1 ≤ f ≤ F}
17: for m = 1 to M do
18: Generates rcdm = (NULL, ...,NULL)
19: Assign the elements in (E1,GE(e1), ...,EF,GE(eF)) to {rcd1, ...,rcdM}
20: for m = 1 to M do
21: (Ercd,grcd)← RcdEnc(rcdm,0,s)
22: Insert ← Insert ∪ (Ercd,Grcd)
23: Send Insert and U pdate to the OPS

24: OPS(Insert,U pdate,GDB):
25: for each (Ercd,Grcd) ∈ Insert do
26: Ercd ← NonceBlind(Ercd,Grcd,GDB, counter)
27: Remove Grcd from Insert
28: Send Insert and U pdate to the CSP

29: CSP(Insert,U pdate,EDB):
30: for each Ercd ∈ Insert do
31: Insert Ercd into EDB
32: for each Ercd ∈U pdate do
33: Update EDB(Ercd.ID) with Ercd

51

To ensure the CSP cannot infer the search pattern of the queries in the same group from the

size pattern, the elements in the same group should have the same occurrence, which has been

achieved by inserting dummy records when bootstrapping the database. In this work, we con-

sider dynamic databases, where users can still insert, delete and update records if required after

bootstrapping the initial database. However, inserting, deleting, or updating records directly

to/from the database will change the occurrence of each involved element. In Chapter 3, we

have discussed the methods to ensure the elements in the same group have the same occurrence

when inserting, deleting, and updating records. In this section, we take the insert query as an

example and give more technical details. Note that if the database is grouped based on the

elements occurrences, ObliviousDB could also use Solution 2 given in Section 3.3.2 to manage

the dummy records when executing insert and delete queries.

The details of inserting a record are illustrated in Algorithm 5. Basically, the records are

inserted with the cooperation of the user, OPS, and CSP.

IIInnnssseeerrrttt(((rrrcccddd,,,sss))) →→→ (((IIInnnssseeerrrttt,,,UUU pppdddaaattteee))). The user first encrypts the record rcd = (e1, ...,eF) by

running RcdEnc (Line 3). When inserting rcd, as discussed in Section 3.3.1, to ensure the

elements in each involved group (f ,GE(e f)) have the same occurrence, the user could either

ensure the occurrences of each inserted element e f unchanged by setting one of the dummy

records with e f to ‘NULL’ in field f , or increase the occurrence of other elements in group

GE(e f) also by one by inserting dummy records. In ObliviousDB, we use the former solution

since it requires much fewer dummy records than the latter one. However, if there is no dummy

record containing each inserted element, the user can only insert dummy records to increase the

occurrence of other elements in involved groups. Therefore, on the user side, the second step is

to check if there is a dummy record containing each inserted element (Line 2 - 8). Specifically,

the user first initialises two sets U pdate and Insert to hold the records to be updated and the

records to be inserted, respectively. Indeed, only one of them will be used, i.e., U pdate will

be used in the former case and Insert will be used in the latter case. Second, the user takes

each inserted element e f as the interested keyword and gets SR f and f lags (Line 6). Then, the

user checks if there is a dummy record in each SR f (Line 7 - 8). If yes, in the next step, the

user updates the f field of one dummy record to SE(NULL) (Line 12). Otherwise, the user

generates and encrypts dummy records (Line 14 - 22). Specifically, in the latter case, for each

field f the user first gets the elements set E f ,GE(e f) of group (f ,GE(e f)) from the OPS (Line

15), which is stored in GDB. Assume there are |E f ,GE(e f)| distinct values in group (f ,GE(e f)).

Let M be the maximum of all these numbers, i.e.,

M = max{|E f ,GE(e f)| | 1 ≤ f ≤ F}

meaning the involved biggest group contains M elements. The user generates M records with

52

‘NULL’ values. Second, it assigns the elements in E f ,GE(e f) to the M records randomly. Third,

the user encrypts each dummy record with RcdEnc (Line 21). Finally, the user sends Insert

and U pdate to the OPS.

The OPS blinds all the records in Insert with nonces by running NonceBlind (Line 24 -

28). For the records in U pdate, the OPS does not blind the SE(NULL) values since we do not

need to ensure its forward and backward privacy. Finally, the OPS sends Insert and U pdate to

the CSP.

The CSP inserts all the records in Insert into EDB and updates the records in U pdate (Line

29 - 33). Finally, the OPS and the CSP run the Oblivious function to shuffle and re-randomise

all the records in involved groups.

4.3 Security Analysis

In this section, we prove ObliviousDB protects the search, size, and access patterns, and

achieves the forward and backward privacy from an honest-but-curious CSP.

Leakage. Although ObliviousDB leaks much less information than other schemes, it still

suffers L0 leakage defined in Section 2.2. Specifically, the CSP can learn if users are inserting,

deleting, updating, or selecting records, and if two queries are searched over the same fields or

not since we do not re-randomise the fields and shuffle the records column by column in the

oblivious algorithm. Moreover, for select queries, the CSP can also learn if they are equality

or range queries. In addition, ObliviousDB also leaks the group information to the CSP. To

optimise the performance of the system, ObliviousDB divides the data into groups and only

performs the search and oblivious operations within groups. Consequently, the CSP could

learn if some records and searched keywords are in the same groups or not. Note that, by

hiding the grouping method from the CSP, it cannot infer the relationship between the elements

in plaintext. Given these leakages, we give our security definition as below. Specifically, we

only consider the queries with the same structure.

Definition 7 (The same structure). We say any two queries Q0 and Q1 have the same structure

if they satisfy the following:

• Q0.type = Q1.type, i.e., they have the same type. Herein, since the database is dynamic,

the query type can be insert, select, or delete. Q = rcd for an insert query.

• Q0.operator = Q1.operator. In ObliviousDB, we focus on equality queries.

• Q0. f = Q1. f , i.e., they are searching over the same field.

• GE(Q0.e) = GE(Q1.e), i.e., they are in the same group. For the insert queries in the

same structure, the new element for each field should be in the same group.

53

For relational databases, it is hard to hide the query type and operator from the CSP since

all the operations over the outsourced database are performed by the CSP. One possible way

to hide the query type is reading and writing the encrypted database for each query. Similarly,

the query operator can be hidden by always performing one type of operator for all queries and

let the user do further process locally. However, this will add the computation burden on the

user side. As mentioned, the interested field can be hidden by shuffling the database column

by column after each query, and the group information can be protected by padding all the

elements into the same occurrence and searching the whole database for executing each query.

Unfortunately, all these operations will significantly impact the performance of the system.

In fact, comparing with the search, size, and access patterns, the above four properties leak

much less information about the query and records to the CSP. For instance, if the query is a

range query, the CSP can only learn the elements in the searched field are integers. However,

this information does not reveal much about this field since the integer could represent many

attributes, such as age, date, price, and temperature. Indeed, whether the elements are integers

or strings can also be learned from the length of their ciphertext if they are not padded before

being encrypted. On the other hand, even with the above restrictions, as shown in the following

definition, the adversary can still design the queries with different search, size, and access

patterns by assigning different values to Q.e. If these patterns are not protected in ObliviousDB,

the adversary can win the game by mounting the leakage-based attacks, such as the count

attack, IKK attack, and file/record-injection attack.

Security definition and analysis. The CSP is modelled as the Probabilistic Polynomial-

Time (PPT) honest-but-curious adversary A, which means A honestly follows the designated

protocols and gets all the messages the CSP sees, but it never mounts active attacks, such as

modifying the database and messages. The scheme is considered to be secure if an adversary

could break it with not more than a negligible probability. Formally, it could be defined as

follows:

Definition 8 (Negligible Function). A function f is negligible if for every polynomial p(.)

there exists an N such that for all integers n > N it holds that f (n)< 1
p(n) .

Definition 9. Let ∏ObliviousDB =(Setup, Query, Oblivious) be ObliviousDB, and λ and k be

the security parameters. A is a Probabilistic Polynomial-Time (PPT) adversary, and C is a

challenger. The game between A and C in ∏ObliviousDB is described as below:

• Setup The challenger C first initialises the system by generating Params and MSK. Then,

she generates the secret key pair (KU ,KS). The adversary A is given Params and KS.

• Bootstrap A submits a database Δ1. As done by the Admin, C encrypts Δ and divides
1For simplicity, we assume there is only one single table in Δ and regard Δ as a table. Without loss of generality,

our proofs will hold for a database containing a set of tables.

54

the data in each field into groups. Moreover, C generates a number of dummy records

for each group, such that the elements in each group have the same occurrences. The

encrypted database EDB is sent to A. The encrypted group information GDB is securely

kept by C.

• Phase 1 A can make polynomially many queries Q in plaintext. C encrypts and blinds

each query Q to an encrypted query EQ, and gets the indices list IL, as would be done by

the user and the OPS. With EQ and IL, A searches over EDB to get the search result SR

for select queries. After that, C and A engage in the oblivious algorithm to update EDB.

So, for each query, A sees EQ, IL, SR, and the records set Ercds output by the oblivious

algorithm. Note that, the A could cache EQ and execute it again independently at any

time.

• Challenge A sends two queries Q0 and Q1 to C that have the same structure, which

can be those already issued in phase 1. C responds the request as follows: it chooses a

random bit b ∈ {0,1} and encrypts and blinds Qb, as done by the user and OPS, to EQ

and IL. Then, C and A perform the full protocol, so that A learns SR and Ercds.

• Phase 2 A continues to adaptively request polynomially many queries, which could

include the challenged queries Q0 and Q1 and insert or delete records.

• Guess A submits her guess b�.

The advantage of A in this game is defined as:

AdvA,∏ObliviousDB(1
k) = Pr[b� = b]− 1

2
.

We say ObliviousDB achieves the privacy of the search, size, and access pattern, and forward

and backward privacy, if all PPT adversaries have a negligible advantage in the above game.

In this game, A is powerful. She knows the plaintext of all the real records and queries and

has full access to EDB. So she could learn the real search result of Q0 and Q1 and run all the

encrypted queries over EDB to get the encrypted search results at any time. If one of the search,

access, size, and forward and backward privacy is not protected, A could infer b easily. For

example, if the search pattern is not protected, A could select one of the queries issued in phase

1 as either Q0 or Q1, and win the game by comparing EQ with previous encrypted queries. If

the forward and backward privacy is not guaranteed, A could delete and insert some records in

phase 1, and search for the deleted or inserted element either in Q0 or Q1. Similarly, A could

win the game by setting other special Q0 or Q1 if one of the other properties is not achieved.

However, if under this setting A cannot win the game with non-negligible advantage, it means

ObliviousDB achieves all the properties. Moreover, in the above definition, A can actively

55

insert malicious data, and update or delete users’ data in Phase 1 and 2. As far as we know,

we are the first to consider an active adversary in the security model setting. In the security

proof of most previous SE schemes, the adversary only passively receives encrypted queries

and database. Since these schemes suffer from leakage, they only claim the leakage profile but

ignore the ability of the adversary to analyse the leakage and inject malicious data.

Theorem 1. Let the SE and DE have semantic security. Then ObliviousDB achieves the privacy

of the search, size, and access pattern, and forward and backward privacy.

Proof. (Sketch) We show that the bit b chosen by C is information-theoretically hidden from

the view of A, assuming that both SE and DE are semantically secure.

Static database. Herein, we first consider a static database and focus on select queries. Con-

sider the view of A in the game. A chooses an arbitrary database Δ and uploads this to C. In

Phase 1, A makes queries that are answered correctly by C by following the protocols.

In the challenge round, A sends two queries Q0 and Q1. A receives EQ. By definition,

the two queries have the same structure. Hence, the same type, interested field, operator and

indices list IL, will be received by A for either query. Since SE is semantically secure, A

cannot distinguish the query terms given the ciphertexts EQ.e∗.

The involved group is accompanied by a nonce n. With overwhelming probability, n is

distinct and unrelated to the nonces used in previous queries. Previously encrypted search

keywords can no longer be used to query these indices, and EQ cannot be executed over deleted

records since the nonces do not match. Hence, there is no way to link information from previous

search queries to these records, indicating forward and backward privacy is achieved.

The adversary A also gets the search result SR. Although the numbers of real records

matched with Q0 and Q1 are known to A since all the queries and real records in plaintext are

set by her, a number of dummy records are inserted into EDB to ensure the queries in the same

group always match the same number of records. That is, no matter what b is, |SR| is fixed.

Since SE and DE are semantically secure, the dummy records are indistinguishable from the

real ones. Therefore, the CSP is unable to distinguish the two queries from SR, indicating the

privacy of size pattern is achieved.

Even if the queries Q0 and/or Q1 have previously been executed by A, the shuffling and

re-randomising performed by the oblivious algorithm, imply that A cannot distinguish the two

queries by comparing SR with previous search results, indicating the access pattern privacy is

achieved.

Finally, A gets Ercds from the oblivious algorithm. All the records and re-randomised.

Due to the semantic security of SE and DE, Ercds leaks nothing meaningful to A.

The game continues in Phase 2. A may repeat Q0 and/or Q1. A may run a related select

query to test the search result. Again, due to the shuffling and re-randomising operations, the

56

ciphertext and storage locations of the matched records for Q0 and/or Q1 will be different from

SR. Similarly, the nonce updating does not allow records to be linked to records found in

previous search queries. Hence, the future state of the database and the queries in Phase 2 are

independent of the query made in the challenge round.

Since A has no information to distinguish the bit b, the scheme satisfies the definition.

Dynamic database. ObliviousDB also supports the insert and delete queries over dynamic

databases. In this part, we analyse the security of ObliviousDB when involving delete and

insert queries.

If Q is a record to be inserted, for each element e f included in Q, C first selects all the

records containing e f and checks if one of them is dummy. If yes for the F elements, C updates

the F dummy records and set their respective fields to ‘NULL’. Otherwise, C increases the

occurrences of the elements in the F involved groups by inserting dummy records. In both

cases, all the elements in the F involved groups will still have the same occurrence. After

that, all the records in the F involved groups will be shuffled and re-randomised. During this

process, A searches over EDB, inserts new records into EDB, and engages in the oblivious

algorithm. Thus, in addition to EQ, IL,SR, and Ercds involved in the searching and shuffling

operations, A also gets the encrypted real and dummy records to be inserted.

If Q is a delete query, C first selects the matched records and then sets the real ones to

dummy by changing the Flags, which is unknown to A. After that, the records in the involved

groups will be re-randomised and shuffled. In this process, C also gets EQ, IL, SR, and Ercds

for the searching and shuffling operations.

First, we analyse if A can win the game by inserting or deleting records in phase 1. For

both the insert and delete queries, ObliviousDB always ensures the elements in the same group

have the same occurrences. As long as Q0 and Q1 are in the same group, |SR| is independent

of b no matter what A did in phase 1. Moreover, due to the SE and DE encryption, A is unable

to infer b based on the ciphertext of the records.

Second, we discuss if A can win the game when Q0 and Q1 are two insert or delete queries

in the challenge phase. When inserting a record, A gets EQ, IL,SR,Ercds, and the encrypted

real and dummy records to be inserted. For delete queries, A only gets EQ, IL, SR, and Ercds.

As discussed above, the value of b is independent from EQ, IL, SR, and Ercds. Due to the

semantic security of both the SE and DE encryption, A cannot tell the value of b based on the

encrypted records.

4.4 Performance Analysis

We implemented ObliviousDB in C using the MIRACL 7.0.0 library, necessary for crypto-

graphic primitives. The implementation of the overall system, including the functions on the

57

Table 4.2: The storage overhead with different numbers of groups.

#Groups #Dummy records #Elements in each group #Records in each group
1 2599836 99996 =4099836
10 2389842 10000 ≈38000
100 1978864 1000 ≈35000
1000 1567983 100 ≈3000
10000 1034007 10 ≈240

user, the OPS, and the CSP, was tested on a single machine with Intel i5 3.3 GHz processor

and 8 GB RAM running Ubuntu 14.08 Linux system. In our testing scenario, we ignored the

network latency that could occur in a real deployment. In the following, all the results are

averaged over 10 trials.

We evaluated the performance using TPC-H benchmark [86]. The table used in our experi-

ment was the ‘ORDERS’, which consists of 1.5 million records and 9 fields. More details about

the ‘ORDERS’ table can be found in Section 3.2. For the performance evaluation, we tested

the simply equality queries like ‘select * from ORDERS where O CUSTKEY=?’. Due to the

memory limitation, we only encrypted the elements in field ‘O CUSTKEY’ with SE for search-

ing and encrypted each record as a whole with DE encryption for data retrieval. Moreover, we

divided the records into groups based on the ‘O CUSTKEY’ elements. In the following, we

show the performance of our scheme when changing the number of groups and the result size.

4.4.1 Group Generation

In ‘ORDERS’ table, all the ‘O CUSTKEY’ elements are integers. For simplicity, we divided

the records into groups by computing GE(e)← e mod b for each element e in ‘O CUSTKEY’

field. Specifically, we divide the records into 1, 10, 100, 1000, and 10000 groups by setting

b =1, 10, 100, 1000, and 10000, respectively.

Recall that the search and access patterns of the queries in the same groups are protected

from the CSP in ObliviousDB since all the elements in the same group are padded into the same

occurrence with dummy records and all the records in the searched group are shuffled and re-

randomised after executing each query. Herein, we use the number of elements in each group

to represent the security level of ObliviousDB. Both the number of required dummy records

and the security level of ObliviousDB vary with the number of groups. In Table 4.2, we show

the number of required dummy records, the number of elements in each group and the number

of records in each group when dividing the records into 1, 10, 100, 1000, and 10000 groups.

In particular, when the group number is 1, i.e., all the records are in the same group, 2599836

dummy records in total are required to pad all the elements in ‘O CUSTKEY’ into the same

occurrence. In this case, all the 99996 different ‘O CUSTKEY’s have the same occurrence and

58

 0.1

 1

 10

 100

 1000

 1 10 100 1000 10000

T
im

e
in

 s
ec

on
ds

Number of groups

End-to-end
Oblivious

Fig. 4.2. The process time taken by each
phase when changing the number of

groups.

 0.001
 0.01
 0.1

 1
 10

 100
 1000

 10000

1 10 100 100010000

T
im

e
in

 s
ec

on
ds

Number of groups

User
OPS
CSP

Fig. 4.3. The process time taken by each
entity when changing the number of

groups.

the scheme ensures the highest level of security. That is, all the queries involving the 99996

‘O CUSTKEY’s match the same number of records, and the CSP cannot tell if any two of them

are searching for the same records or not and if they match the same records or not. However,

in this case, the CSP has to search the most number of records, which is 4099836 (1500000

real records and 2599836 dummy records). When we divide the records into more groups,

as shown in Table 4.2, fewer dummy records are required, fewer records will be searched by

the CSP, and fewer elements will be contained in each group. When there are 10000 groups,

only 1034007 dummy records are required totally, and the CSP just needs to search around 240

records for each query. However, each group only contains 10 different elements, making it

easier for the CSP to infer the search and access patterns.

4.4.2 Select Query Evaluation

To show the performance of ObliviousDB when dividing the database into 1, 10, 100, 1000,

and 10000 groups, we tested a simple equality query over field ‘O CUSTKEY’ and measured

the query process time taken by each phase and entity. When dividing the records into 1, 10,

100, 1000, and 10000 groups, the searched groups contains 4099836, 410000, 34000, 3300,

and 320 records, and their thresholds are 41, 41, 34, 33, and 32, respectively. Moreover, the

tested query matches 32 real records in total.

Fig. 4.2 shows the query search time and the oblivious time (in logarithmic scale). The

query search time consists of the query encryption time on the user, the query blind time on

the OPS, the search and result pre-decryption time on the CSP, and the result decryption time

on the user. From Fig. 4.2 we can see that both the query search time and the oblivious time

reduces linearly with the increase of group numbers. When there are 10000 groups, the search

and oblivious phases can be completed in 0.44 and 0.2 seconds (s), respectively.

Moreover, we show the computation overhead on each entity for processing a query in

59

 0
 1 2
 3 4
 5

 1 10 100 1000 10000

Ti
m

e
in

 s
ec

on
ds

Result size

User-Dec
CSP-Dec

 20
 25
 30
 35
 40
 45
 50

Search
Oblivious

Fig. 4.4. The process time taken by each
phase when changing the result size.

 0
 1 2 3

 1 10 100 1000 10000

Ti
m

e
in

 s
ec

on
ds

Result size

User

 20
 25
 30
 35
 40
 45
 50

OPS
CSP

Fig. 4.5. The process time taken by each
entity when changing the result size.

Fig. 4.3. As described in Section 4.2, when issuing a query, the user generates GE of the inter-

ested keyword, encrypts the query and decrypts the search result. The main computation over-

head in ObliviousDB is outsourced to the OPS and the CSP. Basically, the OPS is responsible

for fetching the list of indices of the searched group, blinding the query with the correspond-

ing nonce, and shuffling and re-randomising all the searched records. The CSP searches the

records and decrypts the matching records. Fig. 4.3 shows that the process time on the user

is not affected by the group number, which is less than 0.01s and negligible compared with

the process times on the OPS and the CSP. Note that the y-axis in Fig 4.3 is in logarithmic

scale. On the contrary, the process times of both the OPS and the CSP reduce linearly with

the increase of group numbers. Moreover, the computation overhead on the CSP is higher than

that on the OPS.

In the second test, we fixed the group number to 100 and measured the times taken by each

phase and entity when executing the queries matching 1, 10, 100, 1000, and 10000 records

(including both the real and dummy records). The times taken by each phase is shown in

Fig. 4.4. Specifically, we divided the query process into four phases: searching the records

(Search), pre-decrypting the result on the CSP (CSP-Dec), decrypting the result on the user

(User-Dec), and running the oblivious algorithm (Oblivious). From Fig. 4.4, first we can see

that the times taken by the ‘CSP-Dec’ and ‘User-Dec’ phases increase with the result size.

Moreover, the time taken by ‘CSP-Dec’ is higher than that of ‘User-Dec’. The reason is that the

user only decrypts real records, whereas, the CSP decrypts both the matching real and dummy

records. In contrast, the performance of ‘Search’ and ‘Oblivious’ phases are not affected by

the result size.

Fig 4.5 shows the times taken by the user, the OPS, and the CSP when changing the result

size. Due to the result decryption operations, the times taken by the user and the CSP increases

with the result size. However, the performance of the oblivious algorithm is determined by the

group size, rather than the result size. Thus, the time taken by the OPS is not changed when

fixing the group size and changing the result size.

60

 0

 1000

 2000

 3000

 4000

 5000

 1 10 100 1000 10000

Ti
m

e
in

 s
ec

on
ds

Number of groups

Case2
Case1

Fig. 4.6. The performance of insert queries.

4.4.3 Insert Query Evaluation

For dynamic operations, we also evaluate the performance of insert queries when dividing the

database into 1, 10, 100, 1000, and 10000 groups. ObliviousDB leverages Solution 1 given in

Section 3.3.1 to manage the dummy records when inserting or deleting records. As described

in Algorithm 5, when inserting a real record rcd = (e1, ...,eF), the user will ensure the elements

in the same group always have the same occurrences. Based on the data distribution, the insert

query will be processed in two different ways. Specifically, if each e f ∈ rcd is included in a

dummy record in the database, the user will replace e f with ‘NULL’ in the dummy record.

By doing so, once rcd is inserted, the occurrence of e f is unchanged. On the contrary, if one

element in rcd only included in real records in the database, its occurrence will increase by

one after inserting rcd. To ensure all the elements in the same group always have the same

occurrence, the user will insert a number of dummy records to ensure the occurrence of other

elements in (f ,GE(e f)) also increase by one. In this experiment, we tested the performance of

the insert query in both cases and showed the result in Fig. 4.6. In the figure, the former case

is called ‘Case1’ and the latter is called ‘Case2’.

Fig. 5 shows that the execution times of both cases decline when increasing the number

of groups. The reason is that, in both cases, the execution time is dominated by the searching

operation, and the searching time declines with the number of groups. Moreover, the perfor-

mance of ‘Case1’ is slightly better than ‘Case2’ when there are less than 10 groups. However,

the performance of the two cases is almost the same when there are more than 10 groups. That

is because the performance of ‘Case2’ is also affected by the number of dummy records should

be inserted, M. Furthermore, the value of M is determined by the number of elements in each

involved group. When the database is divided into more groups, the fewer elements will be

included in each group and fewer dummy records are required in ‘Case2’. In this experiment,

when there are 1, 10, 100, 1000, and 10000 groups, the user has to generate and encrypt 99996,

61

10000, 1000, 100, and 10 dummy records in ‘Case2’, respectively. Specifically, ObliviousDB

takes about 1.25 milliseconds for inserting a dummy record, meaning ‘Case2’ takes 12.5×M

milliseconds for inserting M dummy records. In contrast, in ‘Case1’, the user just need to

update one field of F dummy records no matter how many groups there are.

Note that, in Fig. 4.6, we do not include the time for running the Oblivious algorithm.

However, it is necessary to hide the access pattern.

For deleting a record, the user just needs to update its f lag stored in the OPS to 0.

4.5 Related Work

Since the seminal paper by Song et al. [3], many SE schemes have been proposed and re-

search in this area has been extended in several directions. In this section, we categorise the

approaches presented in the literature based on information leakage and key management and

summarise their limitations.

4.5.1 Schemes with Controlled Leakage

Only several recent works tried to partially address the issue of information leakage. In [16],

Naveed et al. introduce a solution called blind storage that protects the size pattern. The basic

idea is to divide each file into a set of blocks. When a file is requested, a larger set of blocks

will be downloaded and decrypted by the user. In this way, the real number of blocks of the

matched file is protected. However, it aggravates the computational and storage overheads on

the user side. Moreover, it fails to protect the search and access patterns, since the same query

always requests the same block set.

In [92], Wang et al. extend blind storage and also protects the search and access patterns

from the CSP. Specifically, for each required data item the user also downloads a set of random

blocks in addition to the required ones, such the real accessed blocks are masked by the random

ones. Moreover, all the downloaded blocks are permuted, re-randomised and written back to

the CSP. As a result, when the same data item being accessed again, a different set of blocks

will be downloaded. Thus, the CSP cannot infer the search pattern from the access pattern.

However, in this scheme, the user has to store the location information for each file locally

and updates them after each access, which makes the scheme cumbersome when supporting

multiple users access. Moreover, it increases the storage and computation overhead on the user

side.

Samanthula et al. [42] present a query processing framework that supports complex queries.

A homomorphic encryption algorithm is used to encrypt the data in their scheme. Thus, it

supports more complex queries when compared to other schemes, and conceal the size, search,

62

and access patterns from the CSP. However, this scheme is single user and does not scale well

for databases with a large number of attributes.

Cao et al. [5] design a scheme that supports a multi-keyword ranked search. The scheme

protects the search pattern by hiding the trapdoor linkability. Wang et al. [43] propose a public

multi-keyword searchable encryption scheme based on Paillier [39], which also hides the size,

search, and access patterns. More recently, in [41], Ishai et al. protect both the search and

access patterns combining a PIR technique with a B-tree data structure. Although these three

schemes provide different index structures for speeding up the search, the constructions are

static and do not support insert, update, and delete operations.

In [19], Stefanov et al. design a dynamic sub-linear searchable construction based on

an ORAM-like hierarchical structure and achieve forward privacy. Similarly, Rizomiliotis et

al. [61] propose another dynamic ORAM-based scheme that achieves forward privacy and sub-

linear search. More recently, the dynamic SE scheme introduced by Bost [32] also achieves

forward privacy. Instead of using an ORAM-like structure, this scheme relies on a trapdoor

permutation. However, it only ensures forward privacy until a new query is issued. A CSP

could still learn if the new file contains the keywords searched previously, by comparing the

access pattern of a new query with those of previous queries. Moreover, all these three schemes

fail to ensure backward privacy.

Arx [66], introduced by Poddar et al., is a database system that protects the data frequency

information. Its main idea is making all the elements different by appending them with unique

numbers and encrypting them with DET primitives. For issuing queries, the interested element

e will also be appended with the same numbers that used in the database for e and encrypted

with DET. As a result, all the encrypted elements have different ciphertext, and the CSP can

perform the search efficiently. However, the user has to store the state for each distinct value in

the database locally, which is not suitable for MwMr applications. Moreover, it leaks search,

access, and size patterns.

In [56], Chen et al. introduce an SSE scheme that obfuscates the access pattern by adopting

d−privacy [93] technique. The basic idea is to divide each file into a set of shards, from several

of which the file can be recovered. The queries searching for the same file could match different

sets of shards. Thus the access pattern is obfuscated. However, this solution cannot defend the

file-injection attack. The problem is if some of the returned shard is injected by the CSP, it is

still possible to recover queries.

4.5.2 Multi-user SE Schemes

Several works have concentrated on supporting multi-user access and simplifying key manage-

ment. Curtmola et al. [8] introduce a Multi-User (MU) scheme by combining a single user SE

scheme with a broadcast encryption scheme, where only the authorised user can issue queries

63

with the key received from the data owner. However, each time a user is revoked, the data

owner has to generate a new key. Even worse, the data stored on the CSP is encrypted with

the key shared among all the users, which means the revoked users can still recover all the data

if they collude with the CSP. The MU SE scheme given by Jarecki et al. [54] has the same

problem. That is, the data security against revoked users is achieved based on the assumption

that there is no collusion between the CSP and revoked users; otherwise, the key has to be

updated and the data has to be re-encrypted with the new key. Moreover, in their scheme, the

data owner has to be online to generate search tokens for all the authorised users.

Hang et al. [12] and Ferretti et al. [9] present two different collusion-resistant mechanisms

that support multi-user access to the outsourced data. Although they support approaches to

avoid key sharing among users, in both, after user revocation, it is necessary to generate a new

key and re-encrypt the data.

CryptDB [17] is a multi-user scheme where each user has her own password, which is man-

aged by a proxy between the user and the database server. Sarfraz et al. [18] revisit CrtypDB

and also design a multi-user scheme with a fine-grained access control mechanism. Instead of

assigning the keys to users, both [17] and [18] store them in a proxy. Since the users never

know the underlying encryption key, they do not require to refresh the key when revoking a

user. The problem is that these two mechanisms require the proxy to be online for performing

operations on behalf of the users. As a result, the proxy represents a single point of failure: an

attacker who compromises the proxy will gain access to all the logged-in users’ keys and data.

Sun et al. [24] utilise a Ciphertext-Policy Attribute-Based Encryption (CP-ABE) [94] mech-

anism to achieve a scalable SE scheme that supports multi-user read and write operations with-

out sharing any key. However, for user revocation, the data has to be re-encrypted with a new

access structure and secret keys of all the other users need to be updated with a new attribute

set. Strictly speaking, this scheme is also a single-user scheme.

In the literature, only the proxy-based encryption schemes, such as [4,22,57–60], can sup-

port multi-user access, where each user has her own key and does not require any re-encryption

when an authorised user is revoked.

Many other works also investigated approaches to increase search efficiency [8, 11, 14], or

data integrity and reliability in the setting where the CSP is totally untrusted [95, 96].

4.6 Conclusions and Future Work

In this work, we propose ObliviousDB, a searchable scheme for hybrid outsourced databases.

ObliviousDB is a multi-user scheme that does not leak information about the search, access,

and size patterns within each group. It is also a scheme that achieves both forward and back-

ward privacy, where the CSP cannot reuse cached queries for checking if new records have

64

been inserted or if records have been deleted. We have implemented ObliviousDB and shown

that it is capable of performing queries over a database of 4099836 records in around 4 seconds

when dividing the database into 1000 groups.

65

Chapter 5

Multi-Cloud Based Solution

In the previous chapter, we have shown the security and performance of ObliviousDB. How-

ever, ObliviousDB also suffers from several limitations. To some extent, the security and effi-

ciency of ObliviousDB rely on the trusted private cloud, which makes this scheme infeasible for

small and medium-sized organisations that do not have resources for deploying. Specifically,

we cannot move the functionality on the OPS to the public cloud or to users, since it will either

leak sensitive information, such as if each record is dummy or real, to the CSP, or increase the

computation and storage overheads on the user side. Moreover, it is hard to synchronise the

storage on all the users for MwMr databases if we move the functionality of the OPS to users.

The other limitation is that, in ObliviousDB, the search operation between encrypted queries

and records is performed with the bilinear map, making the scheme computationally intensive

for large databases. As shown in Section 4.4, when there are half a million records in a group,

it takes about 76.7 minutes to get the search result.

In this chapter, we present a dynamic SSE scheme for multi-cloud environments named

Privacy-preserving Multi-cloud Database (P-McDb) that addresses the two limitations. First of

all, P-McDb does not rely on any trusted entity to manage and process any sensitive data. This

means that it can be deployed in untrusted environments. Second, P-McDb only uses symmet-

ric encryption and achieves much better performance than ObliviousDB and many other SE

schemes. Furthermore, P-McDb can effectively resist the leakage-based attacks, such as the

frequency analysis, IKK, count, file/record-injection, and reconstruction attacks.

According to the latest report given by Rightscale, 81% of enterprises already have a multi-

cloud strategy in place, which means the schemes based on multi-cloud are feasible for most

organisations. In the research literature, using the multi-cloud strategy is also not new. For

instance, in [97] Stefanov et al. present a 2-cloud ORAM system that reduces the bandwidth

cost between the user and the cloud. In [55], Bösch et al. introduce an SE scheme that hides the

search pattern by distributing the search operation across two non-colluding clouds. In [64],

67

Hoang et al. propose a dynamic SSE scheme that preserves the privacy of the search and access

patterns by creating a distributed encrypted incidence matrix on two non-colluding servers.

P-McDb is a dynamic SSE scheme built on two non-colluding CSPs. Comparing with

the existing multi-cloud based solutions, P-McDb not only hides the search, access, and size

patterns, but also ensures the forward and backward privacy. Moreover, P-McDb achieves a

much better performance when compared with equivalent systems. In addition, P-McDb is

MwMr scheme that supports a scalable key management approach. Specifically, in P-McDb,

many users have access to the same database, and each user is able to protect her queries and

search results against all the other entities. When one user is revoked, instead of changing

the key and re-encrypting the data, P-McDb only needs to inform all the CSPs to stop any

service for the revoked user. Although the revoked users still own the key, they are unable

to issue queries or recover records even by colluding with one CSP. Our key technique is to

use two CSPs, that are assumed not to collude: one CSP stores the data and performs the

search operation, the other manages the re-randomising and shuffling of the database. A user

with access to both CSPs can perform an encrypted search without leaking the search pattern,

access pattern, or size pattern, while achieving forward and backward privacy.

The contributions of this chapter can be summarised as follows:

1. We propose a dynamic SSE scheme that protects the search, access, and size pattern,

thus ensuring resistance against leakage-based attacks.

2. P-McDb achieves both forward and backward privacy.

3. P-McDb supports flexible multi-user access in a way that the issued queries and search

results of one user are protected from the other entities. Moreover, revoking users does

not require key regeneration and data re-encryption even in case if one of the CSPs

colludes with the revoked users.

4. To show the feasibility of our approach, we have implemented P-McDb and measured

its performance.

The rest of this chapter is organised as follows. In Section 5.1, we provide an overview of

our approach. Solution and construction details can be found in Section 5.2. In Section 5.3,

we analyse the security of our system. Section 5.4 reports the performance. We analyse the

potential limitations of our scheme and give a possible solution in Section 5.5. We review the

related work in Section 5.6. Finally, we conclude this chapter in Section 5.7.

68

User 1

User n

…

Storage & Search
Service (SSS)

Untrusted environmentTrusted environment

Witness & Shuffle
Service (WSS)

Admin

CSP 2

CSP 1

Fig. 5.1. An overview of P-McDb.
Users can upload records and issue queries. The SSS and the WSS represent independent
CSPs. The SSS stores encrypted records and executes queries. The WSS stores auxiliary

information to ensure privacy and provides auxiliary information to the SSS for performing
search. After executing each query, the SSS sends searched records to the WSS for shuffling

and re-randomising to provide privacy.

5.1 Solution Overview

In this chapter, we propose an SSE scheme for relational databases that can minimise the

sensitive information leakage and resist against leakage-based attacks. In this section, we define

the system and threat model and illustrate the techniques used in P-McDb in high-level.

5.1.1 System Model

In the following, we define our system model to describe the entities involved in P-McDb, as

shown in Fig. 5.1:

• Admin: An admin is responsible for the setup and maintenance of databases, user man-

agement as well as specification and deployment of access control policies.

• User: It represents a user who joins the system. If granted by the admin, a user can issue

insert, select, delete, and update queries according to deployed access control policies.

• Storage and Search Service (SSS): It provides encrypted data storage, executes en-

crypted queries and returns matching records in an encrypted manner.

• Witness and Shuffle Service (WSS): It stores the auxiliary information needed for re-

trieving data. After executing each query, it shuffles and re-randomises searched records

and auxiliary information to achieve the privacy of access pattern. The WSS has no

access to the encrypted data.

69

• Cloud Service Providers (CSPs): Each of the WSS and the SSS is deployed on the in-

frastructure managed by a separate CSP. The CSPs have to ensure that there is a two-way

communication between the WSS and SSS, but our model assumes there is no collusion

between the CSPs.

5.1.2 Threat Model

We assume the admin is fully trusted. All the users are only assumed to securely store their

keys and the data.

The CSPs hosting the SSS and the WSS are modelled as honest-but-curious. More specif-

ically, they honestly perform the operations requested by users according to the designated

protocol specification. Meanwhile, they are curious to learn sensitive information by analysing

the stored and exchanged data, or injecting malicious data. However, we do not consider active

attacks, such as modifying the database and exchanged data, and assume that there are mecha-

nisms in place for ensuring data integrity and availability of the system. Moreover, we assume

both the SSS and the WSS are part of the public cloud infrastructures provided by different

CSPs.

As assumed in [42, 64, 97], we also assume the CSPs do not collude. In practice, cloud

providers with conflict interests, such as Amazon S3, Google Drive and Microsoft Azure, could

be considered since they may be less likely to collude in an attempt to gain information from

their customers.

5.1.3 Approach Overview

P-McDb aims at hiding the search, access, and size patterns. P-McDb also achieves both

backward and forward privacy. We now give an overview of our approach.

To protect the search pattern, in P-McDb, each query is XORed with a nonce, making

the encrypted query semantically secure. That is, identical queries will look different once

encrypted. However, the SSS may still infer the search pattern by looking at the access pattern.

That is, by looking at the physical locations and ciphertext of the encrypted records returned

by the search operation, the SSS can infer that two queries searching for the same fields are

equivalent if the same records are returned. To address this issue, after executing each query,

P-McDb also shuffles the locations of the searched records. Moreover, prior to re-inserting

these records, P-McDb re-randomises the ciphertexts, making them untraceable. Technically,

after each search operation, we update all the searched records in the database. In this way,

even if a query equivalent to the previous one is executed, the SSS will see a new set of records

being searched and returned, and cannot easily infer the search and access pattern.

70

Another form of leakage is the size pattern leakage, where an adversary can learn the num-

ber of records returned after performing a query. Even after the shuffling and re-randomising,

an adversary could still count the number of records matching each query and guess whether

two queries are equivalent by checking the number of records in the result set. To address

this issue, as done in ObliviousDB, the elements in each field are divided into groups with a

deterministic function and the elements in the same group are padded into the same occurrence

with dummy records. Moreover, P-McDb also adapts Solution 1 introduced in Section 3.3.2

to manage the groups when inserting, deleting or updating records. Here we clarify that the

search pattern is not fully protected in P-McDb. Specifically, the SSS can still tell if the queries

are in the same group or not based on the number of records matching them.

Furthermore, due to the nonces, P-McDb also achieves forward and backward privacy.

After each search operation, the records are re-randomised using fresh nonces. Only queries

that include the current nonce will be able to match the records. In this way, even if a malicious

CSP tries to use previously executed queries with old nonces, she will not be able to match the

records in the data set, ensuring forward privacy. Similarly, deleted records (with old nonces)

will not match newly issued queries because they use different nonces.

At a high-level, ObliviousDB uses the same ideas as P-McDb to protect the search, access,

and size patterns and to ensure forward and backward privacy. However, the design details are

completely different. The details and algorithms of P-McDb will be discussed in the following

section.

5.2 Solution details

5.2.1 Setup

The system is set up by the admin by generating the secret keys s1 and s2 based on the security

parameter k. s1 is only known to the user and is used to protect the data (including queries and

records) from both the SSS and the WSS. s2 is known to both the user and the WSS and is

used to generate nonces for record and query encryption. The admin also defines a symmetric

encryption scheme Enc : {0,1}k ×{0,1}∗ → {0,1}∗, such as AES-ECB, which ensures the

encrypted data is searchable and retrievable. This is sufficient for our searchable encryption

functionality; we do not require any special features of the encryption scheme.

Group Generation. If the initial database is not empty, as done in ObliviousDB, the admin

of P-McDb also divides the elements in each field into groups with a deterministic function,

pads the elements in the same group into the same occurrence by generating dummy records,

and builds the index information for each group. The difference is, in P-McDb, the elements in

each group and the index information are sent to the WSS.

71

Table 5.1: Data representation in P-McDb.

(a) Staff

Name Age
Alice 25
Anna 30
Bob 27
Bill 25
Bob 33

Baker 25

(b) GDB on the WSS

GID Index List Elements
(1,g1,1) {1,2} E1,1 = {Encs(Alice),Encs(Anna)}
(1,g2,1) {3,4,5,6,7,8} E2,1 = {Encs(Bob),Encs(Bill),Encs(Baker)}
(2,g1,2) {1,3,4,6,7,8} E1,2 = {Encs(25),Encs(27)}
(2,g2,2) {2,5} E2,2 = {Encs(30),Encs(33)}

(c) NDB on the
WSS

id ssseeeeeeddd
1 seed1
2 seed2
3 seed3
4 seed4
5 seed5
6 seed6
7 seed7
8 seed8

(d) EDB on the SSS

ID 1 2 Tag
1 SE(Alice) SE(25) tag1
2 SE(Anna) SE(30) tag2
3 SE(Bob) SE(27) tag3
4 SE(Bill) SE(25) tag4
5 SE(Bob) SE(33) tag5
6 SE(Baker) SE(25) tag6
7 SE(Bill) SE(27) tag7
8 SE(Baker) SE(27) tag8

(a) A sample Staff table. (b) GDB, the group information, is stored on the WSS. (c) NDB, containing
the seeds used to generate nonces, is stored on the WSS. (d) EDB, the encrypted Staff table, is stored
on the SSS. Each encrypted data element SE(Dm) = Encs1(e f)⊕n f . Each record has a tag, enabling

users to distinguish between dummy and real records.

72

Algorithm 6 RcdEnc(rcd, f lag,s1,s2)

1: seed $← {0,1}|seed|, where |seed|< |e|
2: n ← Γs2(seed), where n = n1||...||nF ||nF+1, |n f |= |e f | and |nF+1|= 2k
3: for each element e f ∈ rcd do
4: σ ← Hs1(e f)
5: GE(e f)← PRF(σ)
6: SE(e f)← Encs1(e f)⊕n f
7: if f lag = 1 then
8: S $← {0,1}k , tag ← (Hs1(S)||S)⊕nF+1
9: else

10: tag $← {0,1}2k

11: return Ercd = (SE(e1), ...,SE(eF), tag), seed and Grcd = ((GE(e1),Encs1(e1)), ...,
(GE(eF),Encs1(eF)))

Data Encryption. In this part, we describe the steps involved in encrypting a record in

P-McDb. Basically, for each record, the admin generates the group information for each ele-

ment and encrypts it. The details of each operation are provided in Algorithm 6, RcdEnc.

RRRcccdddEEEnnnccc(((rrrcccddd,,, fff lllaaaggg,,,sss111,,,sss222))) →→→ (((GGGrrrcccddd,,,EEErrrcccddd))). RcdEnc takes the record rcd = (e1, ...,eF),

the f lag marking if rcd is real or dummy (f lag = 1 when rcd is real, otherwise f lag = 0),

and the keys s1 and s2 as the inputs, and outputs the encrypted record Ercd, a seed, and the

group information Grcd. To encrypt a (real or dummy) record rcd, first the admin or the user

generates a random string as a seed for generating a longer nonce n with a pseudo-random

generator (PRG) Γ : {0,1}k ×{0,1}|seed| → {0,1}∗ (Line 2, Algorithm 6). The user does not

have to remember the seed seed; this is the job of the WSS. For each data element e f in rcd, the

admin generates its group information by running GE(e f) (Line 5). Moreover, e f is encrypted

using the symmetric encryption algorithm Enc, and then XORed with a nonce fragment n f

(Line 6). The use of n f ensures the forward and backward privacy of SE(e f) (The reason is

given in Section 5.2.3). SE(e f) will be used for encrypted search and data retrieval.

Considering both the WSS and the SSS are untrusted in P-McDb, we cannot mark the real

and dummy records with 1 and 0 in cleartext. Instead, we use a keyed hash value to mark if

each record is real or dummy. Specifically, as shown in Lines 8 and 10, a tag tag is generated

using a keyed hash function H : {0,1}k ×{0,1}∗ → {0,1}k and the secret key s1 if the record

is real, otherwise tag is a random bit string. With the secret key s1, the dummy records can be

efficiently filtered out by users before decrypting the search result by checking if:

lhtag ?
=Hs1(rhtag), where lhtag||rhtag ← tag⊕nF+1

Once all the real and dummy records are encrypted, the admin uploads the group informa-

tion and the seed for each record to the WSS, and each encrypted record to the SSS. The group

73

information stored in the WSS is called GDB, and the seed information stored in the WSS is

called in NDB. The encrypted database stored in the SSS is called EDB. Table 5.1 provides an

example of GDB, NDB, and EDB for the Staff table shown in cleartext in Table 5.1(a). In our

example, the Staff table has 2 fields and contains 6 records.

GDB (shown in Table 5.1(b)) contains a list of indices and the encrypted elements for each

group. NDB (shown in Table 5.1(c)) contains a seed for each record stored in EDB. EDB

(shown in Table 5.1(d)) contains the encrypted records. Note that to ensure the correctness of

the search functionality, it is necessary to store the encrypted records and their respective seeds

in the same order in EDB and NDB (the search operation in details in given in Section 5.2.2).

In addition to the database fields (i.e., Name and Age), EDB also contains the tag field for tag.

Note that EDB contains 2 extra records with id 7 and 8: they are the dummy records generated

by the admin.

5.2.2 Select Query

For simplicity, we also only explain our solution for queries whose predicate is a single

equality predicate. As mentioned in Section 4.2, the complex queries can be performed by

checking the predicate one by one, and whether a record matches the query can be determined

by combining each check result according to the conjunctives and disjunctives between pred-

icates. To support range queries, the technique used in [90] can be adopted, where numbers

are converted into several bags of bit strings, and an inequality over a number is converted into

several equalities over bit strings.

For performing a select query, P-McDb requires the cooperation between the WSS and

the SSS. The details of the steps performed by the user, the WSS, and the SSS are shown in

Algorithm 7.

QQQuuueeerrryyy(((QQQ,,,sss111,,,sss222)))→→→ SSSRRR. On the user side (Lines 1 - 9, Algorithm 7), the algorithm takes the

query Q = (type, f , operator, e) and the secret key s1 as the inputs, and outputs the encrypted

query EQ and a nonce η . To ensure the search efficiency, the user first generates the group

identifier GE(Q.e) by computing PRF(Q.e)) (Line 3), which is defined in Section 4.2. Recall

that we do not aim at protecting the query operator, type and the field pattern from CSPs. Thus,

the user does not encrypt Q.operator, Q.type, and Q. f . The interested keyword Q.e is first

encrypted with the deterministic encryption Enc using s1, and then randomised with a nonce η
(Line 7). The nonce ensures that the encrypted keyword EQ.e∗ is semantically secure. Finally,

the user sends the encrypted query EQ to the SSS and sends EQ. f , η , and GE(Q.e) to the

WSS.

Given EQ. f , η , and GE(Q.e), the WSS provides the list of indices of the searched group

IL and the corresponding nonces EN to the SSS (Line 10 - 18). Specifically, the WSS first gets

74

Algorithm 7 Query(Q,s1,s2)

1: User(Q,s1):
2: σ ← Hs1(Q.e)
3: GE(Q.e)← PRF(σ)
4: EQ.type ← Q.type
5: EQ.operator ← Q.operator
6: EQ. f ← Q. f

7: η $← {0,1}|e|, EQ.e∗ ← Encs1(Q.e)⊕η
8: Send EQ to the SSS
9: Send (EQ. f ,η ,GE(Q.e)) to the WSS

10: WSS(EQ. f ,η ,GE(Q.e),s2):
11: EN ← /0
12: IL ← GDB(EQ. f ,GE(Q.e))
13: for each id ∈ IL do
14: n ← Γs2(seedid), where n = ...||nEQ. f ||... and |nEQ. f |= |η |
15: w ← H(nEQ. f ⊕η)
16: t ← η ⊕ seedid
17: EN(id)← (w, t)
18: Send IL and the encrypted nonce set EN to the SSS

19: SSS(EQ,EN, IL):
20: SR ← /0
21: for each id ∈ IL do
22: if H(EDB(id,EQ. f)⊕EQ.e∗) = EN(id).w then
23: SR ← SR∪ (EDB(id),EN(id).t)
24: Send the search result SR to the user

25: User(SR,η ,s2):
26: for each (Ercd, t) ∈ SR do
27: n ← Γs2(t ⊕η)
28: (Encs1(rcd), tag)← Ercd ⊕n
29: lhtag||rhtag ← tag, where |lhtag|= |rhtag|
30: if lhtag = Hs1(rhtag) then
31: rcd ← Enc−1

s1
(Encs1(rcd))

75

the IL of group GE(Q.e) from GDB (Line 12). Second, for each seedid indexed by IL, the WSS

recovers the nonce n by computing Γs2(seedid) and creates a tuple EN(id) = (w, t) (Line 17).

In particular, w = H(nEQ. f ⊕η) will be used by the SSS to find the matching records, and

t = η ⊕ seedid will be used by the user to decrypt the result. For generating the witness w,

since only the seed is stored in NDB, the WSS has to replay the PRG function to recover the

nonce for each record (Line 14), which increases the computation overhead on the WSS. To

improve the performance of the WSS, the admin can also send the nonce n blinded in each

record to the WSS directly. Whereas, storing the longer nonces puts more storage overhead on

the WSS. In practice, whether caching the nonces on the WSS or not can be determined by the

WSS storage capacity and the requirement for the system performance.

For each query, the SSS gets the encrypted query EQ from the user and gets IL and EN from

the WSS. It traverses the records indexed by IL and finds the records matching EQ with the

assistance of EN (Line 19 - 24). Specifically, the SSS first creates an empty set SR to contain

search results. The SSS performs the search operation over EDB. For each record indexed

by IL, the SSS checks if H(EDB(id,EQ. f)⊕EQ.e∗) ?
= EN(id).w (Line 22). In details, the

operation is:

H(Encs1(eEQ. f)⊕nEQ. f ⊕Encs1(Q.e)⊕η)
?
= H(nEQ. f ⊕η)

As long as the encrypted records and their respective seeds have the same identifiers, only

when Q.e = eEQ. f there is a match. Then, the SSS adds the matched (EDB(id),EN(id).t) to

SR (Line 23). Finally, the SSS sends SR to the user.

Only the user issuing the query knows η and is able to recover the nonce n for each returned

record by computing Γs2(t ⊕η) (Line 27). With n, the user can check if each returned record

is real or dummy (Line 30), and decrypt each real record by computing Enc−1
s1
(EDB(id)⊕ n)

(Line 31), where Enc−1 is the inverse of Enc.

Discussion. Based on the above description, the SSS needs a witness w to check if the record

matches the query. Since each record in EDB is bound with a unique nonce, the WSS has to

send all the blinded nonces indexed by IL to the SSS for each query. When IL is large, the

communication overhead between the WSS and the SSS will be computationally intensive. To

address this issue, the elements in the same groups can be blinded by the same nonces. In this

way, the WSS just needs to generate one pair of (w, t) for each query.

Note that the nonce blinded in each record is mainly used to ensure the forward and back-

ward privacy, rather than to hide the statistical information of the database. Indeed, the statis-

tical information of the database is already protected by the dummy records. As long as the

dummy records are indistinguishable from the real ones, the WSS and the SSS can only learn

the elements in the same group have the same occurrences. The only issue is the SSS and

76

the WSS can learn if the records share the same elements or not, since the Enc encryption is

deterministic. The fact is that, even if the encrypted records are semantically secure, the SSS

can still learn the matched records have the same element in the searched fields after executing

equality queries. Therefore, blinding the records in the same group with the same nonce does

not leak any additional information to the WSS and the SSS.

5.2.3 Shuffling and Re-randomisation

Algorithm 8 Shu f f le(IL,s2)

1: Ercds ← EDB(IL) {Get from the SSS all the records indexed by IL}
2: for each Ercdid ∈ Ercds do
3: n ← Γs2(seedid)
4: Ercdid ← Ercdid ⊕n
5: seed $← {0,1}|seed|

6: r ← Γs2(seed), where |r|= M|D|+2λ
7: Ercdid ← Ercdid ⊕ r
8: NDB(id)← seed
9: Shuffle Ercds and update NDB

10: Update the indices of affected groups
11: Send Ercds to the SSS.

To protect the access pattern and ensure the forward and backward privacy, our solu-

tion is shuffling and re-randomising the searched records after executing each query, as done

in ObliviousDB. In P-McDb, the WSS is responsible for shuffling and re-randomising the

searched records. The details are shown in Algorithm 8, Shuffle.

ssshhhuuu fff fff llleee(((IIILLL,,,sss222))) →→→ EEErrrcccdddsss. The WSS first gets all the searched records from the SSS. To

prevent the SSS learning if any two queries in the same group match the same records or not,

the first step is to update the ciphertext of all the searched records by re-randomising them

(Lines 2 - 8). Specifically, for each record in Ercds, the WSS first recovers the respective

nonce (Line 3)1 and removes the nonce included in each element (line 4). Second, the WSS

samples a new seed, generates a new nonce, and randomises the record with the new nonce

(Line 7). Meanwhile, the respective seed stored in NDB is updated to the new seed (Line 8).

The second step to protect the access pattern is to change the storage locations of the

searched records by shuffling them (Line 9). In our implementation, we leverage the mod-

ern version of the Fisher-Yates shuffle algorithm [98], where from the first record to the last

one, the storage location of each record is exchanged with a random record storing behind it.

Note that the shuffling operation affects the list of indices of the groups in other fields. After

shuffling the records, the WSS also updates the index lists of other groups accordingly (Line

10). Finally, the re-randomised and shuffled records Ercds are sent back to the SSS.
1This step can be skipped if the WSS caches the nonces.

77

By using a new set of seeds during the re-randomising, we are able to achieve both forward

and backward privacy. If the SSS tries to execute an old query, it will not be able to match any

records without the new seeds, which is known only to the WSS. Similarly, the SSS cannot

learn if deleted records match new queries.

5.2.4 User Revocation

Because of the nonces bound to SE, without the assistance of the WSS and the SSS, the revoked

user is unable to recover the query and records only with s1. Therefore, for user revocation,

we just need to manage a revoked user list at the WSS as well as at the SSS. Once a user is

revoked, the admin informs the WSS and the SSS to add this user into their revoked user lists.

When receiving a query, the WSS and the SSS will first check if the user has been revoked. If

yes, they will reject the query. In case a revoked user colludes with either the SSS or WSS,

she cannot get the search results, since such operation requires the cooperation of both the user

issuing the query, the WSS, and the SSS.

5.2.5 Database Updating

P-McDb also uses Solution 1 given in Section 3.3.1 to manage the dummy records. Basi-

cally, when inserting or deleting records, the user ensures the elements in the same groups still

have the same occurrences by inserting, deleting or updating dummy records. The details for

inserting a record is shown in Algorithm 9.

IIInnnssseeerrrttt(((rrrcccddd,,,sss111,,,sss222)))→→→ (((IIInnnssseeerrrtttWSS,,, IIInnnssseeerrrtttSSS,,,UUU pppdddaaattteee))). In P-McDb, the insert query is also

performed with the cooperation of the user, the WSS, and the SSS. Specifically, the user first

encrypts the record rcd = (e1, ...,eF) by running RcdEnc. Note here if the elements in the same

group are encrypted with the same nonce, the user should send the Grcd to the WSS and get

the respective seeds or nonces for encryption then.

Second, to minimise the number of required dummy records, for each field f , the user

selects all the records containing e f and checks if one of them is dummy (Lines 6 - 10).

If yes, for each e f ∈ rcd, the user updates one of the dummy records containing e f to

SE(NULL) (Lines 11 - 14). As a result, the occurrence of e f is unchanged. Since we do not

consider the forward and backward privacy of ‘NULL’, the user uses the same nonce in SE(e f)

for generating SE(NULL) (the nonce can be recovered from the returned tid). By doing so,

both the user and the WSS do not need to update the seed. All the records to be updated will

be sent to the SSS.

On the contrary, i.e., at least one of the inserted element is not included in a dummy record,

the user will increase its group threshold by one and increase the occurrence of all the other

elements in this group by one by inserting dummy records (Lines 15 - 25). Specifically, the user

78

Algorithm 9 Insert(rcd)

1: useri(rcd,s1,s2):
2: U pdate ← /0, InsertWSS ← /0, InsertSSS ← /0
3: (Ercd,seed,Grcd)← RcdEnc(rcd,1,s1, s2)
4: InsertWSS ← (seed,Grcd)
5: InsertSSS ← Ercd
6: sign ← 0
7: for each e f ∈ rcd do
8: SR f ← Query(e f)
9: if All the records in SR f are real then

10: sign = 1, break;
11: if sign = 0 then
12: for f = 1 to F do
13: Assume Ercdid ∈ SR f is dummy, Ercdid .e∗f ← SE(NULL)
14: U pdate ←U pdate∪Ercdid
15: else
16: for each (f ,GE(e f)) ∈ Grcd do
17: E f ,GE(e f) ← GDB(f ,GE(e f))

18: M = max{|E f ,GE(e f)| | 1 ≤ f ≤ F}
19: for m = 1 to M do
20: Generates rcdm = (NULL, ...,NULL)
21: Assign the elements in (E1,GE(e1), ...,EF,GE(eF)) to {rcd1, ...,rcdM}
22: for m = 1 to M do
23: (Ercd,seed,Grcd)← RcdEnc(rcdm,0, s1,s2)
24: InsertWSS ← InsertWSS ∪ (seed,Grcd)
25: InsertSSS ← InsertSSS ∪Ercd
26: Send InsertWSS to the WSS
27: Send InsertSSS and U pdate to the SSS

28: SSS(InsertSSS,U pdate,EDB):
29: IDs ← /0
30: for each Ercd ∈ Insert do
31: EDB(++ id)← Ercd
32: IDs ← IDs∪ id
33: for each Ercd ∈U pdate do
34: Update EDB(Ercd.id) with Ercd
35: Send IDs to the WSS

36: WSS(InsertWSS,GDB, IDs):
37: for each (seed,Grcd) ∈ Insert and id ∈ IDs do
38: NDB(id)← seed
39: for f = 1 to F do
40: GDB(GE(e f))← GDB(GE(e f))∪ id

79

first gets the elements E f ,GE(e f) for each involved group (f ,GE(e f)) from the WSS. As shown

in Table 5.1(b), E f ,GE(e f) contains all the encrypted elements in the group. Assume the biggest

one of the F involved groups contains M elements, i.e., M = {|Ef ,GE(e f)| | 1 ≤ f ≤ F}. Second,

the user generates M dummy records that cover all the elements in (E1,GE(e1), ...,EF,GE(eF)). In

other words, the user uses the elements in (E1,GE(e1), ...,EF,GE(eF)) to assemble the M dummy

records. Third, the user encrypts all the dummy records with RcdEnc and gets Ercd, seed, and

Grcd.

All the encrypted records, including both the real and dummy records, are held in InsertSSS

and sent to the SSS. All the seeds and group information are held in InsertWSS and sent to the

WSS. Note that Ercd and (seed,Grcd) for the same record are stored in the same order in

InsertSSS and InsertWSS.

The SSS inserts and updates the records included in InsertSSS and U pdate (Lines 28 - 35),

For each record in InsertSSS, the SSS assigns an identifier id and stores it to EDB(id) (Line

31). Recall that, to ensure the correctness of the search operation, the records in EDB and their

respective seeds in NDB should have the same identifiers. Moreover, the identifier of Ercd

should be added into the indices in GDB. Thus, the SSS sends the identifier for each Ercd to

the WSS, so that the WSS can know the identifier and storage location for each seed in NDB.

If U pdate is not empty, the SSS updates each record with the new encrypted value (Line 34).

After getting the identifiers from the SSS, the WSS starts to process the seed and Grcd in

InsertWSS (Lines 36 - 40). For each seed in InsertWSS, the WSS inserts it to NDB based on the

respective identifier id get from the SSS (Line 37). For each Grcd = (GE(e1), ...,GE(eF)), the

WSS adds id to each involved group (f ,GE(e f)) (Line 40).

Finally, to protect the access pattern, the shuffling and re-randomising operations over the

involved groups will be performed between the WSS and SSS.

For delete queries, each matched record can be turned into dummy by replacing its tag with

a random 2k-bit string.

5.3 Security Analysis

In this section, we prove P-McDb protects the search, size, and access patterns from both the

SSS and the WSS, and achieves the forward and backward privacy.

To ensure the performance of the system, P-McDb also suffers from the L0 leakage. That

is, both the SSS and WSS can learn the query type, operator and the field pattern. Moreover,

they learn which group is searched for each query, and which records are in the same group.

P-McDb only ensures the privacy of the search, access, and size patterns within groups. In

other words, we show that the SSS cannot distinguish two queries that have the same structure

in the sense of Definition 7.

80

5.3.1 The Security Analysis against the SSS

In P-McDb, the SSS plays the same role as the public CSP used in ObliviousDB, i.e., stores

the encrypted database and executes the queries. Therefore, as done in Section 4.3, to prove

the search, access, and size patterns and the forward and backward privacy are protected from

the SSS, we can use the same way to give the definition and proof.

In short, as done in Definition 9, we build a game between a PPT adversary A and a chal-

lenger C, where A plays as the SSS and performs the encrypted search as defined in P-McDb,

and C plays as other entities and executes their functions as required. In the game, A chooses

the database and designs two queries Q1 and Q2 in the same structure for the challenge. C

bootstraps the database as done by the admin in P-McDb, and then encrypts one of the queries

as done by the user. After that, C and A engage in the full protocol to run the encrypted query.

If A follows the designated protocols honestly and does not modify any data, it will get the

encrypted query EQ, the indices list of the interested group IL, a set of blinded nonces EN for

searching, the search result SR, and the shuffled and re-randomised records Ercds. Based on

this information, A guesses which query is picked by C. Moreover, before and after the chal-

lenge phase, A could also issue queries and get the corresponding EQ, IL, EN, SR, and Ercds.

If A cannot guess which query is encrypted by C in the challenge phase with non-negligible

advantage, we say P-McDb achieves the privacy of the search, size and access pattern, and

forward and backward privacy against the honest-but-curious SSS.

Theorem 2. If the WSS generates IL and EN and performs the shuffling correctly, P-McDb

achieves the privacy of the search, size and access pattern, and forward and backward privacy

against the SSS.

Proof. (Sketch) Static database. First, we assume the database is static and focus on the

select queries. As discussed in Section 4.3, A cannot win the game based on EQ and IL, since

Q1 and Q2 have the same structure and EQ.e∗ is randomised with a nonce.

Due to the seeds, all the encrypted records in SR and Ercds are semantically secure. More-

over, since Q1 and Q2 are in the same group, both the |SR| and |Ercds| are fixed no matter

which query is selected. In addition, if all the records in the searched group are shuffled ran-

domly by C after executing each query, the identifiers of the records in SR will be independent

of the selected query. Thus, A cannot win the game based on SR and Ercds.

Comparing with ObliviousDB, the SSS also gets EN in P-McDb. As described in Algo-

rithm 7, the elements in EN are blinded with a nonce which is independent of the query. Thus,

the adversary cannot win the game based on EN.

Dynamic database. If the database is dynamic, P-McDb and ObliviousDB use the same

method to manage the dummy records when inserting and deleting records. For insert query,

81

the SSS in P-McDb and the CSP in ObliviousDB receive the same messages from the user,

i.e., the encrypted real record to be inserted and the dummy records to be updated or the new

dummy records to be inserted. The records are encrypted in different ways in P-McDb and

ObliviousDB, yet in both schemes, the encrypted records are semantically secure. Therefore,

the security analysis for insert queries can be referred to the discussion in Section 4.3.

A could also send delete queries in phase 1, the challenge phase and/or phase 2. For delete

queries, the A just need to assign a random 2k-bit string to the tag of each matched record. By

doing so, the real records will be turned into dummy. After shuffling and re-randomising, A

cannot determine which record‘s tag has been revised. Therefore, A cannot learn additional

information and win the game by issuing delete queries in phase 1, the challenge phase and/or

phase 2.

5.3.2 The Security Analysis against the WSS

In P-McDb, the WSS is also honest-but-curious. In this part, we prove the patterns and the

forward and backward privacy are also protected from the WSS. In the security definition

given below, we model the WSS as the honest-but-curious PPT adversary A who follows the

designated protocols and gets the GDB and NDB stored on the WSS and the data the WSS

received when executing a query, but does not mount active attacks.

Definition 10. Let ∏P-McDb =(Setup, Query, Shuffle) be P-McDb, and λ and k be the security

parameters. A is a PPT adversary, and C is a challenger. The game between A and C in ∏P-McDb

is described as below:

• Setup The challenger C first initialises the system by generating s1 and s2. The adversary

A is only given s2.

• Bootstrap A submits a database Δ. As done by the Admin, C encrypts Δ and divides

the data in each field into groups. Moreover, C generates a number of dummy records

for each group, such that the elements in each group have the same occurrences. The

encrypted database EDB is securely kept by C. The encrypted group information GDB

and seeds NDB are sent to A.

• Phase 1 A can make polynomially many queries Q in plaintext. As would be done by

the user, C generates the group information, encrypts and blinds each query Q with a

nonce η , and sends the field EQ. f , the group GE(Q.e) and η to C. After that, A gets IL

from GDB and generates EN, and sends them to C. After the search operation, C and A

engage in the shuffling and re-randomising to update EDB. So, for each query, A sees

GE(Q.e), EQ. f , η and all the searched records Ercds.

82

• Challenge A sends two queries Q0 and Q1 to C that have the same structure, which can

be those already issued in phase 1. C and A perform the full protocol, so that A learns

GE(Q.e), EQ. f , η and Ercds.

• Phase 2 A continues to adaptively request polynomially many queries, which could

include the challenged queries Q0 and Q1.

• Guess A submits her guess b�.

The advantage of A in this game is defined as:

AdvA,∏P-McDb(1
k) = Pr[b� = b]− 1

2
.

We say P-McDb achieves the privacy of the search, size and access pattern, and forward and

backward privacy against the honest-but-curious WSS, if all PPT adversaries have a negligible

advantage in the above game.

Theorem 3. If the WSS generates IL and EN and performs the shuffling correctly, P-McDb

achieves the privacy of the search, size and access pattern, and forward and backward privacy

against the WSS.

Proof. (Sketch) We show that the bit b chosen by C is hidden from the view of A.

Static database. First, we consider the static database and focus on the select queries.

Consider the view of A in the game. A chooses an arbitrary database Δ and uploads this to

C. In Phase 1, A makes queries that are answered correctly by C by following the protocols.

In the challenge round, A sends two queries Q0 and Q1, and receives EQ. f , GE(Q.e) and

η . By definition, the two queries have the same structure. Moreover, the group generation is

deterministic. Hence, the same EQ. f and GE(Q.e) will be received by A for either query. The

nonce η is independent of the interested term in the query, so A cannot distinguish the query

terms given η .

Finally, A gets all the searched records Ercds from A for re-randomising and shuffling.

For all the queries in the same group, if A follows the designated protocols honestly, it always

gets the same set of records. Thus, Ercds is also independent of b. For re-randomising records,

A first removes the old nonces blinded in each searched record. After removing the nonces, the

records are protected only with the deterministic encryption Enc. Thus, the WSS can learn if

the records contain the same elements or not. Even though, due to the inserted dummy records,

the real occurrence of each element is still hidden from the WSS.

The game continues in Phase 2. A may repeat Q0 and/or Q1. However, A always gets

the same GE(Q.e), EQ. f and Ercds for any query in the same group, and the nonce η is

independent of the interested term included in the query.

83

Since A has no information to distinguish the bit b, the scheme satisfies the definition.

Dynamic database. Second, we consider the insert and delete queries in dynamic databases.

In phase 1, no matter what types of queries are issued by A, as long as Q0 and Q1 are in the

same structure, as discussed above, A cannot infer b based on GE(Q.e), EQ. f and η .

In the challenge phase, if Q0 and Q1 are two insert queries, A runs Algorithm 9. Basically,

C first inserts Qb (Qb = (e1, ...,eF) is a record). Second, for each element e f ∈ Qb, C selects

all the records containing it and checks if one of them is dummy. If yes to all the F elements,

for each e f , C updates one dummy record containing e f into ‘NULL’ in field f . Otherwise,

C inserts dummy records to increase the occurrence of other elements each involved group.

In both cases, A receives the group information Grcd of Qb and a seed seed used to encrypt

Qb. Moreover, as done for select queries, C also gets a nonce η when searching each e f .

In the former case, no message is sent to C when updating the dummy records. In the latter

case, C also gets Grcd and seed when inserting each dummy record. Indeed, as mentioned in

Algorithm 9, the dummy records have the same elements as the real one. Hence, their Grcds

are equal to the real one. Recall that, for the records in the same structure, their elements in

each field are in the same group, meaning Grcd is the same for either Q0 or Q1. Moreover,

seed and η are independent of b, since they are random bit strings. Therefore, A cannot win

the game when Q0 and Q1 are two insert queries.

If Q0 and Q1 are two delete queries, C first selects the records matching Qb, and then

updates them into dummy by updating their tags in EDB with random 2k-bit strings. A is not

engaged in this operation. Only for the searching operation, A gets GE(Q.e), EQ. f and η .

However, as mentioned above, A cannot distinguish the bit b based on them.

5.4 Performance Analysis

5.4.1 Complexity Analysis of P-McDb

Although P-McDb only supports linear search, the search operation over each record is signif-

icantly efficient. In this part, we theoretically and empirically analyse the costs associated with

the search, shuffle, and decryption operations over each record in P-McDb.

Let XORk, Enck, Hashk, PRGk, and Enc−1
k represent the computation overhead of per-

forming these operations with k bits key, respectively. Recall that F is the number of fields.

To execute a query Q, the user generates GE(Q.e), encrypts the interested term Q.e with

Enc and XORs it with a nonce, and encrypts Q. f with a hash function. Hence, the computation

complexity of encrypting a predicate on the user side is Enck +XORk +2Hashk.

Afterwards, for each record, the WSS recovers the nonce with the seed and generates (w, t)

with XORs and hash operations. The computation complexity of this operation is PRGk +

84

Table 5.2: The computation and communication overhead for each record or each query.

Method Operation Computation cost per query Communication
cost per record

P-McDb
Search

User: XORk +Enck +2Hashk
WSS: PRGk +XORk +Hashk +XOR|seed|
SSS: XORk +Hashk

|Hash|+ |seed| bits

Decryption User: XOR|seed|+PRGk +F(XORk +Enc−1
k) |Ercd|+ |seed| bits

Shuffle WSS: PRGk +(F +2)XORk 2|Ercd| bits

PPQED
Search

User: SUBN
CSP1: HAN2 + kHEk +SC
CSP2: HEk +HDk

2k+ |Ercd| bits

Decryption User: F(HDk +SUBN) 2|Ercd| bits
Oblivious data
retrieval

CSP1: F(HAN2 +HEk)
CSP2: FHDk

3|Ercd| bits

SisoSPIR Search
User: XORT +XOR|rcd|
CSP1: T XOR|rcd|
CSP2: (T +1)XOR|rcd|

2|rcd| bits+ T integers

XORk, Enck, Hashk, PRGk, and Enc−1
k represent the computation overhead to perform these

operations with k bits key, respectively. HEk and HDk represent the computation overhead of
performing homomorphic encryption and decryption with k bits keys, respectively. SUBN is the

computation overhead of the modular subtract operation over N. HAN2 stands for the computation
overhead of homomorphic addition in Z∗

N2 . SC represents the Secure Comparison (SC) protocol
proposed in [99]. XORT is the computation overhead of XORing T integers.

XORk +Hashk +XOR|seed|.

Finally, the SSS checks if each record matches the predicate by executing one XOR and

one hash operations, the computation of which is XORk +Hashk. In this protocol, the user

sends |SE(e)|-bit data to both the WSS and the SSS, and the WSS sends |Hash|+ |seed| bits to

the SSS for each record in the interested group.

After searching, the SSS sends the results to the user. Each encrypted record is |Ercd| =
F |e|+ 2k bits long. In addition, the |seed|-bit seed for each matched records should also be

sent to the user for recovering the nonce.

Meanwhile, the SSS also sends the searched records to the WSS for shuffling. The WSS

re-randomises each record with a nonce, but before that the WSS has to generate the nonce

with a new seed, indicating the computation overhead on the WSS is PRGk +(F + 2)XORk.

In this protocol, the communication between the WSS and the SSS is |Ercd| bits per record.

As mentioned in Section 2.2, only the HE-based PPQEDa proposed by Samanthula et

al. [42] and the ORAM-based SisoSPIR given by Ishai et al. [41] could hide the access pattern

in databases. According to the description in [42] and [41], we also summarise the computation

and communication overhead in PPQEDa and SisoSPIR. From Table 5.2, we can infer that

both the computation and communication overhead in our scheme is better than them. Note

that PPQEDa is based on public-key encryption system, and the lengths of its key k and Ercd

85

are much larger than the values in P-McDb.

5.4.2 Benchmark of P-McDb

We implemented P-McDb in C using MIRACL 7.0 library for cryptographic primitives. The

performance of all the entities was evaluated on a desktop machine with Intel i5-4590 3.3

GHz 4-core processor and 8GB of RAM. As done in ObliviousDB, we also evaluated the

performance using TPC-H benchmark [86], and tested equality queries with one singe pred-

icates over ‘O CUSTKEY’ field in ‘ORDERS’ table. Moreover, we divided the elements in

‘O CUSTKEY’ field into 1, 10, 100, 1000, and 10000 groups by setting b =1, 10, 100, 1000,

and 10000, respectively. When dividing the records into 1, 10, 100, 1000, and 10000 groups,

the searched groups contains 4099836, 410000, 34000, 3300, and 320 records, and their thresh-

olds are 41, 41, 34, 33, and 32, respectively. The specific details of the groups can be found in

Section 4.4. In the following, all the results are averaged over 100 trials.

5.4.2.1 The Setting on WSS

 0.001
 0.01
 0.1

 1
 10

 100
 1000

 10000

 1 10 100 1000 10000

Ti
m

es
 in

 m
s

Number of groups

SingleStore
FullStore
SemiStore

(a) The NonceBlind running time on the WSS.

 0.1

 1

 10

 100

 1000

 10000

 1 10 100 1000 10000

Ti
m

es
 in

 m
s

Number of groups

SingleStore
FullStore
SemiStore

(b) The Shuffle running time on the WSS.

Fig. 5.2. The performance of the WSS in different cases.
In ‘FullStore’ case, the WSS stores both the seed and the nonce for each record. In

‘SemiStore’ case, the WSS only stores the seeds. In ‘SingleStore’ case, the elements in each
group are blinded with the same nonce and the WSS only stores one seed for each group.

As mentioned in Section 5.2, the performance of the WSS depends on whether the nonces

are stored in NDB and whether the elements in the same group are blinded with the same

nonces. Thus, we first compared the performance of the WSS in three different cases. Specif-

ically, in the first case, the WSS stores both the seed and the nonce for each record. We call

this case ‘FullStore’. In the second case, the WSS only stores the seeds and it has to derive the

nonces for each query. We name this case ‘SemiStore’. We call the last case as ‘SingleStore’,

where the elements in the same group are blinded by the same nonce and the WSS only stores

86

one seed for each group. In P-McDb, the WSS is mainly responsible for executing the Nonce-

Blind and the Shuffle operations for each query. Hence, we measured the running times of the

two functions in the three cases and show the results in Fig. 5.2(a) and 5.2(b), respectively.

From Fig. 5.2(a) and 5.2(b), we can see that ‘SingleStore’ has the best performance for

both the NonceBlind and the Shuffle operations. Moreover, the NonceBlind execution time is

not affected by the groups in ‘SingleStore’ case, which is 0.005 milliseconds (ms). That is

because the elements in the same group are blinded with the same nonces, the WSS just needs

to generate one pair of (w, t) for each query. However, in the other two cases, the WSS has to

generate the (w, t) pairs for all the records in the searched group, and the number of records in

each group decreases when increasing the number of groups. Hence, the NonceBlind execution

times of the two cases go down with the group number. In addition, Fig. 5.2(a) and 5.2(b) show

that ‘FullStore’ performs better than ‘SemiStore’. The reason is that in ‘SemiStore’ the WSS

has to generate the nonce from the seed for each record, whereas, in ‘FullStore’ the WSS can

get it from NDB directly.

In the following experiments, we use ‘SingleStore’ case.

5.4.2.2 The Performance of Each Operation

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 1 10 100 1000 10000

Ti
m

es
 in

 m
s

Number of groups

QueryEnc
NonceBlind
Search
ResultDec
Shuffle
EndToEnd

(a) The performance of each operation with different
group numbers.

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000

Ti
m

es
 in

 s

Number of groups

User
WSS
SSS

(b) The performance of each entity with different group
numbers.

Fig. 5.3. The performance of each operation and entity.

To show the performance of P-McDb in details, we measured the execution time of each op-

eration involved in the query process, including the query encryption, nonce blinding, search-

ing, result decrypting, and the shuffling.

In Fig. 5.3(a), we show the effect on each operation when we change the number of groups.

In this test, the tested query matches 34 records (32 real and 2 dummy records), which is also

the occurrence of the elements in the searched group. As we can see from Fig. 5.3(a), the times

for encrypting the query and blinding the nonce do not change with the number of groups. On

87

the contrary, both the searching and shuffling times drop sharply with the increase of the group

number. The reason is that the search and the shuffle operations are performed over all the

records in the searched group. The more groups, the fewer records in each group. Thanks to

the efficient XOR operation, even when g = 1, i.e., searching and shuffling the whole database

(contains 4099836 records in total), the search and the shuffle operations can be finished in

1.87 and 1.59 seconds, respectively.

Moreover, we can also notice that the time taken by the result decryption decreases slowly

when increasing the number of groups. For recovering the required records, in P-McDb, the

user first filters out the dummy records and then decrypts the real records. Therefore, the result

decryption time is affected by the number of returned real records as well as the dummy ones.

In this experiment, the tested query always matches 32 real records. However, when changing

the number of groups, the number of returned dummy records will be changed. Recall that,

to break the link between the search and size patterns, all the elements in the same group are

padded into the same occurrence, i.e., the group threshold, with dummy records. The group

threshold is determined by the highest occurrence in the group. When the records are divided

into more groups, fewer elements will be included in each group. As a result, the occurrence of

the searched element tends to be closer to the group threshold, and then fewer dummy records

are required for its padding. Thus, the result decryption time decreases with the increase of the

group number. In the tested dataset, the elements have very close occurrences, which ranges

from 1 to 41. The number of matched dummy records are 9, 9, 2, 1 and 0 when there are 1, 10,

100, 1000 and 10000 groups, respectively. For the dataset with a bigger element occurrence

gap, the result decryption time will change more obviously when changing the number of

groups.

In addition, Fig. 5.3(a) also shows the end-to-end latency on the user side when issuing a

query. In this test, we did not simulate the network latency, so the end-to-end latency shown

here consists of the query encryption time, the nonce blinding time, the searching time and

the result decrypting time. As shown in the figure, the query encryption and nonce blinding

times are only 0.005 ms, which are negligible compared with the searching time. Thus, the

end-to-end latency is dominated by the searching time and also decreases when increasing the

number of groups. Note that the shuffle operation does not affect the end-to-end latency on the

user side since it is performed by the WSS after the search operation.

5.4.2.3 The Performance of Each Entity

An important aspect of an outsourced service is that most of the intensive computations should

be off-loaded to the CSPs. To quantify the workload on each of the entities, we measured

the latency on the user, WSS, and SSS for processing the query with different numbers of

groups. The results are shown in Fig. 5.3(b). We can notice that the computation times taken

88

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 1 10 100 1000 10000

Ti
m

es
 in

 s

Number of groups

Case1
Case2

Fig. 5.4. The performance of the insert query.

on the WSS and the SSS are much higher than that on the user side. Moreover, in this test,

the elements in the same groups are blinded by the same nonces. Thus, the shuffling time and

the nonce blinding time taken on the WSS are improved significantly, making the computation

overhead on the WSS a bit less than that on the SSS. The latency on the user side is mainly

for decrypting the returned records, which will increase with the number of returned records.

Based on our experiment, when the user gets more than 100000 records and setting g = 10, the

user has the similar computation overhead as the WSS and the SSS.

5.4.2.4 Comparison with Other Schemes

To better investigate the performance of our approach, here we roughly compare the search time

of P-McDb with PPQEDa and SisoSPIR. Although we did not access their implementation, our

experiments were conducted on Linux machines with approximate power1. Searching over 1

million records takes more than 10 seconds in SisoSPIR. In PPQEDa, it takes 1 second to

check if a predicate matches with a record when the data size is 10 bits. However, P-McDb

only takes less than 2 seconds when searching over 4.1 million records, which is much more

efficient than the other two schemes.

5.4.2.5 The Performance of Insert Query

Since P-McDb is a dynamic SE scheme, we also tested its performance for insert queries. As

done in ObliviousDB, P-McDb also utilises Solution 1 to manage the dummy records when

inserting and deleting records. Recall that, Solution 1 processes the insert query in two differ-

ent ways: ‘Case1’ and ‘Case2’. In ‘Case1’, the user just needs to update F dummy records.

However, in ‘Case2’, the user has to insert M dummy records. We also tested the performance

of the two cases for P-McDb and show the result in Fig. 5.4.

1PPQEDa was tested on a Linux machine with an Intel Xeon 6-Core CPU 3.07 GHz processor and 12 GB
RAM and SisoSPIR was tested on a machine with an Intel i7-2600K 3.4GHz 4-core CPU 8GB RAM.

89

For insert query, comparing Fig. 5.4 with Fig. 4.6, the performance of the two cases is

affected in the same way in ObliviousDB and P-McDb. That is, the execution time of both

cases drops down when dividing the database into more groups, ‘Case1’ performs better than

‘Case2’, and the gap between them gets smaller when increasing the number of groups. The

difference is, P-McDb takes much less time to process an insert query than ObliviousDB in

both cases. In our test, P-McDb takes only around 0.0058 ms to encrypt and insert a record.

When all the records are on one group, P-McDb takes 2.8 ms and 3.44 ms for running an insert

query in ‘Case1’ and ‘Case2’, respectively.

5.5 Discussion

Although P-McDb protects the search, access, and size patterns from the CSPs, and achieves

the forward and backward privacy. As discussed before, it also suffers from several limitations.

In this section, we highlight the limitations of P-McDb and give the possible countermeasures.

The first issue of P-McDb is the collusion between the SSS and the WSS. In P-McDb, the

SSS knows the search result for each query, and the WSS knows how the records are shuffled

and re-randomised. If the SSS colludes with the WSS, they could learn the search and access

patterns. To resist such collusion attacks, one possible solution is to generalise the system by

introducing three or more CSPs, where one of them acts as the SSS and the others act as the

WSS. In this case, the oblivious algorithm has to be performed with the cooperation of all the

WSSs. Only when all the CSPs collude together, the search and access patterns will be leaked,

which is significantly harder than the colluding between only two CSPs.

Moreover, in this work, we assume both the WSS and the SSS are honest. Yet, in order to

learn more useful information, the compromised CSPs might not behave honestly as assumed

in the security analysis. For instance, the SSS might not search all the records indexed by IL,

and the WSS might not shuffle the records properly. Since both the WSS and the SSS are

untrusted, P-McDb needs a mechanism to detect if both the SSS and the WSS honestly follow

the designated protocols. We leave this problem to our future work. Last but not least, in [97],

Stefanov et al. present a multi-cloud based ORAM system and give an approach to detect if

the data is shuffled properly on the CSP. We can utilise their approach to P-McDb.

5.6 Related SE schemes Using multiple Servers

In the literature, there are several other SE schemes also use the multi-cloud strategy to min-

imise the sensitive information leakage or optimise the performance of the system.

In [97] Stefanov et al. present an ORAM storage system based on the multi-cloud strategy.

By spreading the data and functionalities across two non-colluding CSPs, the access pattern is

90

hidden from the CSPs. In [64], Hoang et al. distribute the indices to two non-colluding CSPs

and achieve the privacy of access pattern by re-encrypting and swapping the indices stored in

the two CSPs after each query. In [41], Ishai et al. present a construction of a private outsourced

database in the two-CSP model. By applying secure multiparty computation between the two

CSPs, their solution hides all leakage due to access patterns between queries.

In [55], Bösch et al. introduce a distributed SE scheme that hides the search pattern. In

their construction, the search operation is distributed across two non-colluding CSPs. By con-

tinuously re-shuffling the index as it is being accessed, none of the CSPs can tell which record

was accessed and thus the search pattern of the scheme remains hidden. In [100], Orencik et

al. propose an efficient scheme that allows privacy-preserving search over encrypted data using

queries with multiple keywords. A two-CSP setting is employed to eliminate the correlation

between the queries and matching files sent to the user under the assumption that the two CSPs

are not colluding. Moreover, queries are randomised such that distinguishing two queries gen-

erated using the same search terms from unrelated queries is hard, i.e., the search pattern is

hidden.

The multi-cloud strategy is also used to improve the performance of the system. In [101],

Kuzu et al. design a distributed secure index which allows parallel execution among multiple

servers. In their study, the index is vertically partitioned and distributed to multiple servers to

enable simultaneous decryption of large data payloads. By doing this, SE schemes can easily

scale to big data. In [102], Poh et al. also propose a distributed SSE scheme over multiple

servers. To prevent any one server from possessing a complete set of files or blocks of a file,

their solution distributes files/blocks to many servers. Due to such distributions, their scheme

hides the file sizes and the total number of files even after retrieval, while maintaining sublinear

search time for each server.

5.7 Conclusion

In this work, we presented P-McDb, a dynamic searchable encryption scheme for multi-cloud

outsourced databases. P-McDb does not leak information about the search, access, and size

patterns. It also achieves both forward and backward privacy, where the CSPs cannot reuse

cached queries for checking if new records have been inserted or if records have been deleted.

Furthermore, P-McDb offers a flexible key management scheme where revoking users does not

require regeneration of keys and re-encryption of the data. As future work, we plan to do our

performance analysis by deploying the scheme in the real multi-cloud setting.

91

Chapter 6

Preserving Access Pattern Privacy in
SGX-Assisted Encrypted Search

To process outsourced data efficiently and securely without sensitive information leakage, an-

other promising practical approach to process outsourced data efficiently and securely is lever-

aging trusted hardware like Intel Software Guard Extension (SGX) [50]. SGX can isolate sen-

sitive code and data in an encrypted memory region, called enclave. During execution, privacy

and integrity of enclave memory are preserved with a set of hardware mechanisms. Recently,

several SGX-based approaches for encrypted data access have been investigated in the liter-

ature. For instance, Fuhry et al. [103] present two constructions for sub-linear search over

encrypted database by using SGX. Zheng et al. [105] introduce an SGX-assisted oblivious data

analytics scheme that conceals the data access pattern. Moreover, several works [52, 106, 107]

explore the deployment of ORAM on SGX. Unfortunately, these schemes suffer from several

limitations. For instance, the constructions proposed in [103] leak the access pattern. Although

the access pattern is concealed in [52, 106, 107], these schemes require long-term storage on

SGX for managing the map between each data instance and its storage location, which is in

large size when the database has millions of distinct values. These solutions are not very practi-

cal due to very limited memory resources in SGX. The scheme proposed by Zheng et al. [105]

needs to scan the entire database linearly to answer a query. Another limitation is that there

are side channel attacks when using SGX to ensure secure data access. Indeed, several recent

works, such as [109–111], have shown that the Operating System (OS) can infer the data ac-

cess pattern in SGX by launching side channel attacks, such as page faults, timing and cache

attacks. State of the art solutions [52, 105–107] do not give the solutions to resist the side

channel attacks. In Table 6.1, we compare existing SGX-based schemes.

Research Challenges. The main objective of this chapter is to preserve access pattern privacy

by using SGX while ensuring efficient search over encrypted data and without any long-term

93

Table 6.1: Comparison of recent SGX-based schemes.

Scheme Search
complexity

Access
pattern
leakage

Side
channel
leakage

No long-term
storage on SGX

Fuhry et al. [103] – Construction 1 O(logN) �� � ✔

Fuhry et al. [103] – Construction 2 O(logN) � � ✔

Gribov et al. [104] O(logN) � � ✔

Eskandarian et al. [52] – Linear O(N) � � ✔

Eskandarian et al. [52] – Indexed O(log2 N) �� � ✔

Zheng et al. [105] O(N) � � ✔

Sasy et al. [106] – � � ✘

Costa et al. [107] – � � ✘

Ahmad et al. [108] – � � ✘

SGX-assisted encrypted database [53] O(N/P) � � ✔
�, ��, and � mean the information is completely leaked, partially leaked, and not leaked, respectively.
✔and ✘represent if long-term storage on SGX is not required or required, respectively. N represents

the number of nodes in the tree or number of records in the database. P is page size in an SGX enclave.
In [106, 107], no search operation is performed and this is denoted by –.

storage requirement in the enclave. As discussed below, there are two main challenges to

achieve our objective: preserving the access pattern privacy while providing efficient search

and withstanding side channel attacks.

To support efficient search, a straightforward method is to build indices and load only the

required indices into SGX. However, this method leaks the index access pattern directly to the

CSP, i.e., the CSP can learn which indices match the query. To fully hide the index access

pattern, a typical strategy is to load all the indices into SGX. Nonetheless, an SGX enclave

only has around 90 MB memory for storing the code and data. For a large database, indices

will exhaust the enclave memory and virtual memory mechanism of the OS. Consequently,

this will significantly affect the performance of SGX. Moreover, as shown in [103], the actual

pages that are accessed is still unprotected because of the page fault attack [109]. Therefore, the

first challenge is to fully guarantee the access pattern privacy without exhausting the enclave

memory when the database is large.

Although SGX provides a trusted environment for data processing, it suffers from side

channel leakage, where the data is leaked when it is loaded into SGX [109–111]. Thus, the

second challenge in our work is to protect the access pattern against potential side channel

attacks. Several countermeasures, such as data oblivious access, balanced code execution, and

data shuffling have been proposed in [112–114]. However, these techniques are too generic to

be used in SE schemes. For instance, to defend against the page fault attack, Shinde et al. [113]

propose to balance the code execution by adding and accessing dummy data. Nonetheless,

we should ensure the added dummy data can be checked like real ones and do not affect the

correctness of the search results, otherwise, the CSP can infer the real index access pattern.

94

Therefore, the techniques specific to SE schemes should be considered.

Our Contributions. In this chapter, we present an SGX-assisted SE scheme addressing the

aforementioned research challenges. Basically, our solution uses the B+ tree structure to en-

sure search efficiency. To address the first challenge, our scheme loads and processes the tree

nodes in batches. On the one hand, this method ensures that the index access pattern is pro-

tected. On the other hand, our scheme can process a large database without exhausting the

enclave memory. Meanwhile, it protects the access pattern against the page fault attack. To

mitigate other side channel attacks, e.g., timing attacks, the B+ tree is searched in a balanced

way, independent of the query and the access pattern. To analyse the performance, we evaluate

our proposed scheme on Big Data benchmark [51] and compare it with ObliDB [52], an SGX-

assisted ORAM-based database that protects the data access pattern. Our scheme outperforms

ObliDB by at least 5.78× for range queries. We also compare our scheme with a baseline im-

plementation without access pattern protection with sub-linear search support. There is always

a tradeoff between security and performance. Our results show that our approach to protect the

access pattern and defend side channel attacks introduces less than 27× overhead when the B+

tree contains around 1 million keys. Moreover, our approach does not require any long-term

storage on the enclave. In summary, our contributions in this chapter are as follows:

• Our scheme protects the access pattern from the CSP by leveraging a trusted SGX.

• Our scheme prevents the CSP from inferring the access pattern by launching side channel

attacks.

• Our scheme supports s simple equality match and complex operations including range,

aggregate, and join queries.

• We have implemented a prototype of the system and tested its performance on an SGX-

based hardware.

Chapter Organisation. The remainder of this chapter is organised as follows. First, Section

6.1 gives a brief overview of SGX functionalities and explains possible side channel attacks.

An overview of our proposed solution is provided in Section 6.2. Then, we present our solution

details in Section 6.3 and 6.4 before introducing its security analysis in Section 6.5. In Section

6.6, we report performance analysis. Section 6.7 reviews related work. Finally, we conclude

this chapter in Section 6.8.

95

6.1 Background

6.1.1 Intel SGX

In this section, we give a brief introduction of SGX functionalities relevant to our system. For

more details on SGX, we refer the reader to [50,115]. SGX is an extension of x86 instructions

for creating and managing software components, called enclave. Physically, the enclave is

located inside a hardware guarded area of memory called Enclave Page Cache (EPC). The EPC

consists of 4KB page chunks, and only around 90MB EPC can be used by the application. The

SGX hardware enforces additional protection on the enclave, such that it is isolated from the

code running on the system including the OS and the hypervisor.

Apart from the isolated code and execution, SGX has another two main security properties:

sealing and attestation. Sealing is the process of encrypting enclave secrets for persistent stor-

age to disk [116]. Every SGX processor has a key called the Root Seal Key that is embedded

during the manufacturing process. Once an enclave is created, a seal key – which is specific to

the enclave – is derived from the root seal key. When the enclave is torn down, this seal key

is used to encrypt data and store the data in the disk. SGX also supports remote attestation,

enabling a remote party to verify if an enclave is created properly on a trusted SGX. It also pro-

vides integrity to the code and data loaded into the enclave. Furthermore, the remote attestation

feature helps in establishing a secure channel between an external party and the enclave.

6.1.2 Side Channel Attacks on SGX

Intel SGX offers secure execution environment by cryptographically protecting code and data

on an untrusted server. Unfortunately, it is vulnerable to side channel attacks. As discussed

below, there are at least three possible side channel attacks that could be launched by the

untrusted server to derive sensitive information.

Page Fault Attack. An SGX program is executed in user mode, and it needs the underlying

OS to manage virtual memory pages. Specifically, when launching an SGX process, the OS

creates the page tables that map the virtual addresses to physical memory entries. However,

when the virtual pages cannot be mapped to the physical memory, the CPU incurs a page fault

and the faulting address will be reported to the OS. By manipulating the page table mappings,

as shown in [109], a malicious OS can observe the page access pattern in SGX.

Timing Attack. Timing attack allows attackers to learn sensitive information by analysing

the times taken to execute data-dependent operations. Every logical operation in a computer

takes time to execute, and this time could differ based on the input, which is also the case for

the operations in SGX. With precise measurements of the execution time for each operation,

an attacker can backtrack the input data.

96

User

SGX enabled untrusted CSP

Trusted enclave

Search

I. Secret key

II. Encrypted records and indices

1. Encrypted query
Index trees

Records
3. rid lists

4. Encrypted records

2. Encrypted
nodes

Fig. 6.1. An overview of the proposed approach.
The user shares the secret key with the trusted SGX enclave (Step I). The encrypted data and

indices are stored in the untrusted cloud server (Step II). The query is decrypted and processed
by the enclave (Steps 1, 2, and 3). After searching, the matched records together with a set of

random records will be returned to the user (Step 4).

Cache Attack. Cache attack, or cache timing attack, is much more powerful, where an attacker

can learn which cache lines are accessed by SGX. In the Intel X86 architecture, an L3 cache is

shared among different CPU cores, while L2 and L1 caches are shared among different threads,

including SGX threads. Thus, as discussed in [110,117], the classic Prime+Probe, Evict+Time,

and Flush+Reload techniques are also effective to monitor the cache lines accessed by SGX.

6.2 Solution Overview

In this section, we first explain system entities and then describe the threat model and assump-

tions. Next, we briefly explain our design goals and the proposed approach. Finally, we give a

security definition of our solution.

6.2.1 System Entities

Our system includes three entities: the user, SGX-enabled Cloud Service Provider (CSP) and an

SGX enclave within the CSP. The users upload encrypted databases to the CSP and later issue

encrypted queries and retrieve encrypted results. The CSP is responsible for storing encrypted

data and loading data into the enclave for performing search. SGX enclave is responsible for

processing user queries and returning search results to users without leaking any content and

the access pattern to the CSP.

97

6.2.2 Threat Model and Assumptions

As done in other systems listed in Table 6.1, in our threat model, we assume the user is trusted.

Similar to existing work (see Section 6.7), we assume adversaries could attack and fully control

the OS running on the CSP, and they are curious about the data residing on the CSP. For

simplicity, in the rest of the article, we regard the CSP as an adversary, which honestly follows

the specified protocol but is curious to know the data. Since we employ encryption, the CSP is

unable to access the data in cleartext. Moreover, the CSP cannot control and access the code

and data within the enclave. Nonetheless, the CSP can interrupt the enclave as desired, by

modifying the OS and SGX SDK, in order to learn side channel information. Therefore, we

assume the CSP is able to exploit side channel attacks including the page fault attack [109],

timing attack [118], and cache attack [117,119] to infer the code paths and data access patterns

inside the enclave. There are also other types of side channel attacks, such as branch shadowing

[111], power monitoring [120], and electromagnetic [121], which are beyond the scope of this

work.

SGX enclave is also considered to be trusted. In particular, both integrity and confidential-

ity of the code and data inside the enclave are protected with inherent cryptographic mecha-

nisms. We also assume that SGX provides methods for establishing a secure channel with the

users for protecting the communication between them.

6.2.3 Architecture Overview

Our system aims at enabling the CSP to process user queries in sub-linear time without leaking

sensitive information about the content of the data and queries. Furthermore, we aim at pro-

tecting the access pattern of SGX against side channel attacks without exhausting the enclave

memory even when the database is large. To achieve these goals, our basic idea is to encrypt

the outsourced data and queries, build indices for the dataset, and enable SGX to perform the

search operation in an oblivious manner.

The proposed approach is illustrated in Fig. 6.1. It consists of the trusted code inside the

enclave for processing queries, the data storage on the CSP, and the encryption and decryption

operations on the user side.

Initially, the user generates a secret key sk to encrypt the outsourced data and queries. The

secret key sk is shared with SGX via a secure channel (Step I). To ensure search efficiency, the

user first builds indices for the dataset and then uploads both the encrypted dataset and index

trees to the CSP (Step II). For building an index, we use the B+ tree structure, the most popular

one used in Database Management Systems (DBMSs) [103, 122]. When issuing a query, the

user encrypts it using randomised encryption and sk (Step 1). Since sk is unknown to the CSP,

the content of the query and whether the same query has been sent before (i.e., search pattern)

98

are protected from the CSP. With the secret key sk, the enclave decrypts the query and loads

the associated index tree from the CSP for performing search (Step 2). To hide which nodes

in the tree match the query, a.k.a. the index access pattern, the nodes are loaded and accessed

in an oblivious manner that is independent of the query and could resist side channel attacks

including page fault, timing, and cache attacks as explained in Section 6.3. After searching the

B+ tree, SGX will know the identifiers rids of the records matching the query predicate(s). The

next step is to return the result to the user for select queries, or load and process the matched

records for aggregate functions, such as ‘MAX’, ‘SUM’ and ‘GROUP BY’. For both cases,

to hide which records match the query, a.k.a. the record access pattern, SGX also returns or

processes the matched records in an oblivious manner that could resist side channel attacks

(Step 3). Finally, the user obtains the results in plaintext by decrypting them using sk.

6.2.4 Security Definition

The security of access pattern is defined as follows:

Definition 11 (Access Pattern Security). Let
−→
H := ((Q1,R1), . . . ,(QT ,RT)) be the search his-

tory at time T , where Qt denotes the query, and Rt is its search result at time t (1 ≤ t ≤ T). Let

AI(
−→
H) and AR(

−→
H) be a sequence of accesses over the indices and the dataset of

−→
H , respec-

tively. We say that the access pattern is protected from the CSP if for any two search histories
−→
H 0 and

−→
H 1 of the same length, their access pattern (AI(

−→
H 0),AR(

−→
H 0)) and (AI(

−→
H 1),AR(

−→
H 1))

are computationally indistinguishable by the CSP.

6.3 Solution Detail

In this section, we first show how the data is represented and encrypted. Then, we describe

how equality and range queries are processed in our system.

6.3.1 Data Representation

To support sub-linear search, given the database, the user first builds a standard B+ tree based

on a defined branching factor. Formally, we define a B+ tree as tree = {b,L,N,cnt,nodes}.

Here, b is the branching factor, indicating each node can have up to b child nodes and b−1 keys.

L is the number of levels of the tree, and the root node is in level l = 1. cnt = {cnt1, . . . ,cntL} is

an array of integers of length L. cntl represents the number of nodes in level l, where l ∈ [1,L].

The total number of nodes in the tree is N = Σl=L
l=1cntl . nodes = (node0, . . . ,nodeN−1) is the

array storing the N nodes in the tree. The order of storing nodes is from root to leave nodes and

from left to right.

99

1 𝑘𝑘2
0𝑘𝑘1

0 32

𝑘𝑘1
14 𝑘𝑘2

1 65 𝑘𝑘3
1 7 𝜅𝜅1

20 𝜅𝜅2
2 80 𝑘𝑘3

2 9 𝜅𝜅1
310 𝑘𝑘3

3𝑘𝑘2
3 12110

0

1 2 3

8

Tree={4, 3, (1, 3, 9), (node0={0, (𝑘𝑘1
0, 𝑘𝑘2

0), (1, 2, 3)}, node1= …) }

𝑘𝑘2
8 𝑘𝑘3

8𝜅𝜅1
80 0 2 1

1 {2, 5, …}

2 {7, 9, …}

rid lists

…

Logical structure

…

4

…

125 6 7 9 10 11

… … … … … …

Fig. 6.2. A B+ tree index example with branch = 4, 3 levels, and 13 nodes.
From root to leave nodes and from left to right, all the nodes are assigned a sequence of

numbers in order as the id. Each non-root node stores 3 keys and 4 values, including both real
and dummy keys and values. The dummy keys and values must be stored in the most left. The

real value is the id of its child node. The dummy values are set to 0. The real value in each
leaf-node is the id of a list of identifiers of the records matching the key.

The non-leaf node is defined as nodeid = {id,γ,(k1, . . . ,kb−1),(cid1, . . . ,cidb)}. id is unique

and used to identify the node, which also represents the node storage location in nodes. In the

B+ tree, each node contains an array of keys (k1, . . . ,kb−1) for searching, and an array of its

child nodes ids (cid1, . . . ,cidb) for reaching its child nodes, where nodei.cid j = nodecid j .id.

The b−1 keys in each non-root node consist of both real and dummy keys. On the one hand,

the dummy keys are used to ensure all the nodes have the same size. On the other hand, the

dummy keys are necessary to thwart side channel attacks (the reason will be given in Section

6.3.3). γ represents the number of dummy keys contained in the node.

The real keys are stored in the most right of the node and in increasing order, i.e., (k1, . . . ,kγ)

and (kγ+1, . . . ,kb−1) are dummy and real keys, respectively, and kγ+1 < .. . < kb−1. The real

keys separate the key domain into b−γ subtrees that are reachable by b−γ child node ids, i.e.,

(cidγ+1, . . . ,cidb). Moreover, the real keys in nodecidi are in (ki−1,ki]. Let [min,max] be the

domain for the keys. To ensure the dummy keys never match the query, we assign them the

values out of the domain, i.e., the values less than min or greater than max. Meanwhile, the

dummy keys are not used to generate subtrees, so (cid1, . . . ,cidγ) are set to 0.

The leaf node has the same structure as the non-leaf node. However, the leaf node does not

have child nodes; instead, its cidi points to a list of rids of the records whose values are equal

to ki. Likewise, if the leaf node has less than b−1 real keys, a number of dummy keys will be

100

generated and stored in the most left of the key array. The record identifiers lists are encrypted

and stored separately. Moreover, to hide size information, the user pads the lists to the same

size before encrypting.

Fig. 6.2 illustrates the logical structure of a sample tree with b = 4, L = 3, and N = 13,

where cnt1 = 1,cnt2 = 3, and cnt3 = 9. The non-root node with less than 3 keys is padded with

dummy keys that are inserted to the most left of the nodes. For instance, the first two keys κ2
1

and κ2
2 in node2 and the first key κ3

1 in node3 are the dummy keys, and their cids are 0.

Index Access Pattern Protection. Our main objective is to hide the access pattern from the

CSP. Protecting the access pattern means protecting both the index access pattern and record

access pattern since the record and index are linked with each other. Protecting the index access

pattern means protecting which nodes at each level are accessed from the CSP, excluding the

root node. For each query, to hide its access pattern over the B+ tree, we need to answer three

questions: Question 1) Which nodes should be loaded into SGX?; Question 2) Which loaded

nodes should be searched?; and Question 3) Which keys should be checked in each searched

node? In the following, we will give the answers to the three questions for equality, range and

join queries.

Generally, to get the matched records in sub-linear time, SGX needs to search the root

node in the first level and determine which nodes should be searched in the second level, and

so forth. However, if SGX only loads the matched nodes at each level, the CSP can learn the

index access pattern directly. To fully hide the index access pattern, for both equality and range

queries, our solution to Question 1 is loading the entire tree into SGX. In our approach, without

exhausting the enclave memory, SGX reserves only one single EPC page and loads the tree in

batches, rather than loading the entire tree in one go. Specifically, SGX loads and processes

the tree nodes level by level. When the nodes at one level cannot be loaded into one EPC page,

they will be grouped in fragments and loaded fragment by fragment, where each fragment

contains the maximum number of nodes that can be loaded into one EPC page. Thus, our

system can efficiently process the dataset in any size without exhausting the enclave memory.

Moreover, which nodes are accessed within each loaded fragment is unknown to the CSP. Note

that to load the indices from the CSP, the code execution context has to be switched between

the trusted and untrusted environment, which is time-consuming. To reduce the frequency of

context switching, SGX could also reserve more EPC pages and load more nodes per batch.

For clarity, we focus on the case of reserving one EPC page and loading one fragment each

time in the rest of this work.

101

6.3.2 Data Encryption

After building the tree, the user encrypts both the dataset and the index tree before sending

them to the CSP. For encryption, given a security parameter λ , the user generates the secret

key sk. Basically, each record is encrypted with sk using a randomised encryption algorithm

such as AES-GCM. Each encrypted record is identified with a unique rid in plaintext.

In this work, to ensure the performance of our system, we do not aim to hide the tree

structure from the CSP. That is, the CSP could learn the values of b,L,N and cnt. The user

only encrypts the nodes in nodes. Specifically, the tree encryption is performed in three phases.

In the first phase, all the nodes are padded to the same size as dummy keys and cids. Assume

all the nodes are s bits. It is known that the EPC page size is 4 KB, meaning each page can

hold at most P = �4KB
s � nodes.

In phase 2, the user fragments the nodes at each level P by P. In order to hide the order

among the fragments, the user permutes the fragments with a pseudo-random permutation

π : {0,1}λ � ×{0,1}ι → {0,1}ι . Each fragment has P nodes excluding the last fragment, such

the nodes at each level will be loaded fragment by fragment. Afterwards, each fragment is

encrypted with a semantically secure block encryption Enc : {0,1}λ ×{0,1}32768 → {0,1}32768

(32768 = 4KB is the data size in bit that can be hold in one EPC page), e.g., AES-128 in GCM

mode.

In the third and last phase, for each cid in each leaf node, the user first pads each rid list

into a fixed size with dummy data, say −1, and then encrypts each list with Enc and sk. By

padding the lists into the same size, the data distribution can be hidden from the CSP. Note that

the list longer than the fixed size will be cut into multiple sub lists. In this case, the cid in each

leaf node should contain multiple references pointing to the sub lists.

6.3.3 Searching Tree

When issuing a query Q, the user encrypts it by computing EQ ← Encsk(Q), such the

query is protected from the CSP. Moreover, Enc is semantically secure and search pattern is

also hidden from the CSP.

The query is processed on SGX and the details are shown in Algorithm 10. Once received

EQ, SGX first decrypts EQ with sk to get Q (Line 1), such it can learn the type of the query,

the interested field(s) and keyword(s).

Tree loading. For different types of query, SGX loads the interested tree(s) in different ways.

In this section, we focus on the equality and range queries, and give the details in lines 2 - 14.

Specifically, SGX uses mid to cache the id(s) of the node(s) should be searched at the next

level. When Q is an equality query, mid is set to be an integer of the same length as node id

and initialised as id of the root node. Whereas, mid is set to be an N-bit string when Q is a

102

Algorithm 10 Query(EQ, tree,P)

1: Q ← Decsk(EQ)
2: if Q is equality query then
3: mid ← 0
4: if Q is range query then
5: mid ← {0}N

6: mid[0]← 1
7: Nodes[P]← 0 {Allocate an EPC for loading tree nodes}
8: for l = 1 to l = tree.L do
9: for i = 1 to i = � tree.cntl

P � do
10: Load Encsk(fl

i) to Nodes
11: if Q is equality query then
12: EqualitySearch(Q,Nodes, tree.b,mid, l/tree.L)
13: if Q is range query then
14: RangeSearch(Q,Nodes, tree.b,mid)

range query. Recall that N is the total number of nodes in the tree. The i-th bit in mid is used

to mark if the i-th nodes in the tree is the matched one or not. Specifically, the id-th bit is set

to 1 if the id-th node is the matched one, and 0 otherwise. Its first bit is initialised with 1 since

the search operation starts from the root node. After searching the root node, SGX will know

which nodes should be searched in level 2 and so forth.

For both equality and range queries, SGX reserves a fixed EPC page Nodes (Line 7) and

loads the required index tree(s) in batches for performing search (Line 8 - 14). Indeed, SGX

loads and processes the permuted fragments at each level one by one. Since all the nodes at

each level will be loaded, it is unnecessary to recover the order of the fragments before loading.

In the following, we show how the loaded fragment is processed in detail for equality and range

queries separately.

Solutions against Page Fault Attacks. Using a single EPC page to hold data blocks is not

sufficient to resist the page fault attack. Indeed, if only the fragment containing the matched

nodes (called matched fragment in short) is accessed, the CSP can still learn the index access

pattern at page granularity by launching page fault attacks since only when the page is accessed

the fault address will be reported to the OS. Our solution is to ensure every loaded fragment is

accessed by SGX. Specifically, when the loaded fragment does not contain the matched nodes

(called unmatched fragment in short) SGX searches several random nodes. In this case, even

if the page fault exception occurs, the CSP is unable to know if it is caused by accessing the

matched nodes or random ones.

Solutions against Timing and Cache Attacks. To defend against timing attacks, the time

of searching the B+ tree should be independent of the query and the access pattern. Unfortu-

nately, loading the tree in batches and searching random nodes in unmatched fragments are not

sufficient to achieve this. Basically, there are still three issues making the index access pattern

103

vulnerable to timing attacks.

First, in a traditional B+ tree, the nodes may contain a different number of keys, and the

time of processing a fragment depends on how many keys are checked in the accessed node.

In turn, based on the processing time, the CSP can infer the number of checked keys, and

then infer which node is accessed. For instance, assume checking one key takes T seconds. If

the loaded fragment is processed in nT seconds, the searched node must contain no less than n

keys. According to the size of each encrypted node, the CSP could infer which node is accessed

with a high probability. To solve this issue, the real size of each node should be hidden after

encrypting and our solution has achieved this by adding dummy keys.

The second issue is, when the same query is repeated, the fragments holding the matched

nodes will be processed in fixed times, but the other fragments will be processed in variable

times since the nodes to be searched in them are randomly picked and searching different

nodes might take different times. By repeating the same query and detecting the processing

time for each fragment, the CSP can infer the fragments with fixed processing times must be

the matched ones, and vice versa. Thus, the CSP is still able to get the access pattern at page-

level granularity. This issue can be prevented by appending timestamps to encrypted queries

so that the CSP cannot replay issued queries.

However, even if all the encrypted nodes are of the same size and appended with times-

tamps, the CSP can still compare each fragment’s processing time for different queries. For the

queries searching the same tree, if each level has a fragment that is processed in the same time,

there is a high probability that those queries are equivalent and the fragments processed in the

same time contain the matched nodes.

Our scheme supports both the equality and range queries. Since the equality and range

queries are processed in different manners, our solution takes different measures to prevent

the timing attack. In traditional B+ trees, for each equality query, there is only one key that

matches the query at each level, indicating only one node should be searched at each level. To

protect the searched node from the page fault attack, SGX randomly searches an unmatched

node for each loaded unmatched fragment. Therefore, for equality queries, to Question 2, our

answer is always access one node in each loaded fragment. Furthermore, to defend against

the timing attack, our solution is to ensure all the fragments are processed in constant time.

Specifically, as mentioned in Section 6.3.1, the user pads all the non-root nodes into the same

size by inserting dummy keys. Moreover, for each accessed node, SGX searches all the keys in

the accessed node no matter if it is the matched one or a random one and no matter if the key

is real or dummy, which is the answer to Question 3 for equality queries. In this case, since

all the nodes have the same number of keys and each key is processed in the same time, SGX

processes each fragment in the same time for all equality queries.

For range queries, multiple keys could match the query, which means SGX might need

104

to access multiple nodes at each level. Moreover, it is hard to ensure all the fragments are

processed in constant time for range queries since the number of nodes searched in each frag-

ment varies with queries. Therefore, to withstand the timing attack, our idea is to ensure both

the matched and unmatched fragments are processed at different times even if the same range

queries are repeated. Basically, SGX searches a random number of nodes in unmatched frag-

ments and also searches some random nodes when processing matched fragments. That is our

answer to Question 2 for range queries.

By mounting cache attacks, the CSP might still be able to learn how many and which nodes

are searched in each fragment. However, if the CSP is unable to learn whether the searched

nodes are matched or randomly picked ones, the index access pattern is still protected. There-

fore, it is important to ensure the matched nodes and randomly picked nodes are indistinguish-

able for the CSP even if it mounts cache attacks. To achieve this, SGX searches the matched

and randomly picked nodes in constant time and in the same manner. In Algorithms 11 and

12, we show how the loaded fragment is processed in details for equality and range queries,

respectively.

6.3.4 Equality Query

Algorithm 11 EqualitySearch(Q,Nodes,b,mid, isLastLevel)

1: Nodes ← Decryptsk(Nodes)

2: r1
$← {0, len−1}, where len is the number of nodes in Nodes

3: r2 ← mid −Nodes[0].id
4: if Nodes[0].id ≤ mid ≤ Nodes[len−1].id then
5: node ← Nodes[r2]
6: f lag ← 1
7: else
8: node ← Nodes[r1]
9: f lag ← 0

10: tid ← node.cidb
11: for j = b−1 to j = 1 do
12: if (Q.K ≤ node.k j and isLastLevel = 0) or (Q.K = node.k j and isLastLevel = 1) then
13: shi f t ← 1
14: else
15: shi f t ← 0
16: tid ← tid − shi f t
17: mid ← mid ∗ (1− f lag)+ f lag∗ tid

For an equality query, only one node will be accessed in each loaded fragment, i.e., the

matched one or a random one. The challenge is how to ensure that the CSP is unable to learn

whether the accessed node is the matched one or a random one via side channels.

EEEqqquuuaaallliiitttyyySSSeeeaaarrrccchhh(((QQQ,,,NNNooodddeeesss,,,bbb,,,mmmiiiddd,,, iiisssLLLaaassstttLLLeeevvveeelll))) →→→ mmmiiiddd. The detail of processing each

105

loaded fragment is described in Algorithm 11, EqualitySearch. After searching the nodes at

the upper level, the id of the matched node (i.e., mid) is cached in SGX. SGX first decrypts

the loaded fragment (Line 1, Algorithm 11). Second, it checks if the matched node nodemid is

contained in the current fragment (Line 4). To hide if the accessed node is the matched one or

a random one, the two cases are processed in the same way (Lines 2 - 9). Specifically, SGX

pre-computes a random location r1 and the possible location of the matched node r2. If the

matched node is included in this fragment, the r2-th node in the page will be accessed. Other-

wise, the r1-th node will be accessed. Moreover, a f lag is used to mark if the searched node

is the matched one or a random one. Specifically, f lag = 1 when the searched node is the

matched one, and f lag = 0 otherwise.

Once the node to be searched is determined, the next step is to check which key inside the

node matches the query. The enclave traverses all the keys inside the node (Lines 10 - 16). To

resist the timing attack, the node should be processed in constant time. Thus, all the keys in the

node should be checked in the same way no matter whether it is a dummy or real and whether

it matches the query or not. Specifically, Q.K is first assumed to be greater than the last key

node.keyb−1 (Line 10). In other words, the last child node is assumed to be the matched one at

the next level. From the most right to the left, SGX checks if each key node.k j is greater than

or equal to the query. If yes, tid decrements, meaning the child node cid j+1 is not the matched

one. Otherwise, tid is unchanged, indicating cid j+1 is the matched child node.

Nevertheless, the dummy keys in the searched node could also match the query since they

are assigned with real values. To ensure the correctness of the search result, we should ensure

the dummy keys cannot change the value of mid. As shown in Line 17, after searching a node,

mid is updated based on two values: f lag and tid. When the searched node is randomly picked,

f lag = 0 and mid is not changed after searching no matter what tid is. On the contrary, when

f lag = 1, i.e., the searched node is the matched one, mid will be updated with tid. We should

ensure the dummy keys cannot change the value of tid, i.e., shi f t = 0 and Q.K is greater than

all the dummy keys stored in matched nodes. Indeed, Q.K should be greater than or equal to

the first real key in the matched node. Recall that the dummy keys are stored in the most left

of the node. By assigning the values out of the domain, they will never change tid since they

are less than Q.K.

Note that, if the searched node is the matched leaf node, the result mid is the identifier of

the matched rids list.

6.3.5 Range Query

In our system, the predicate in range queries is parsed into LK < x < RK. In particular, LK

(RK) is min (or max) value of the domain when the input predicate is x < RK (or LK < x). The

details for processing a range query are shown in Algorithm 12.

106

Algorithm 12 RangeSearch(Q,Nodes,b,mid)

1: Nodes ← Decryptsk(Nodes)

2: r $← {0,1}len, where len is the number of nodes in Nodes
3: for i = 0 to i = len do
4: if r[i] = 1 or mid[Nodes[i].id] = 1 then
5: node ← Nodes[i]
6: if Q.RK > node.kb−1 then
7: mid[node.cidb]← mid[node.id]
8: else
9: mid[node.cidb]← 0

10: for j = b−2 to j = 2 do
11: if node.k j−1 <Q.LK ≤ node.k j or node.k j−1 <Q.RK ≤ node.k j or Q.LK ≤ node.k j−1 and

node.k j < Q.RK then
12: mid[node.cid j]← mid[node.id]
13: else
14: mid[node.cid j]← 0
15: if Q.LK ≤ node.k1 then
16: mid[node.cid1]← mid[node.id]
17: else
18: mid[node.cid1]← 0

RRRaaannngggeeeSSSeeeaaarrrccchhh(((QQQ,,,NNNooodddeeesss,,,bbb,,,mmmiiiddd))) →→→ mmmiiiddd. SGX first decrypts the loaded fragment. To en-

sure the matched and randomly picked nodes are processed in a balanced way, SGX first pre-

computes a random bits string r (Line 2). Second, SGX traverses the EPC page (Lines 3 - 18),

and searches the i-th node if r[i] = 1 or mid[Nodes[i].id] = 1. When mid[Nodes[i].id] = 1, the

searched node is a matched one. Otherwise, it is a random one. Note that both r and mid are

stored in registers and concealed from the OS. Thus, the OS is unable to learn the values of r

and mid.

To ensure the matched and randomly picked nodes are processed in constant time and in

the same manner, our answer to Question 3 is that no matter if the searched node is a matched

one or not, SGX traverses all its keys from the right to the left in the same way (Lines 6 - 14).

More specifically, for each key node.k j (1 ≤ j ≤ b−1), if there is a match, SGX assigns 1 to

mid[node.cid j], such that when processing the nodes at the next level SGX knows nodecid j is

a matched one. Otherwise, SGX assigns 0 to mid[node.cid j]. Recall that the dummy keys in

each node are either greater than max or less than min. By doing so, the dummy keys cannot

match the query. Thus, the correctness of mid is guaranteed. Moreover, considering all the

nodes have the same number of keys, all the accessed nodes will be processed in constant time

no matter if they are the matched ones or randomly picked and no matter how many keys in

them match the query.

107

6.3.6 Returning Search Results

After searching the tree index, SGX gets the identifier(s) of the matched rids list. For select

queries, the next step is to return the matched records to the user. The straightforward way is

to send mid to the CSP. However, the CSP could learn the record access pattern.

In our system, the matched records are returned in an oblivious manner. Specifically, SGX

first loads the matched list(s) together with a set of random lists, and which of them are the

matched ones are unknown to the CSP. Second, to resist side channel attacks, SGX decrypts all

the lists to get the rids of the matched records. Third, the matched rids and a set of random rids

are sent to the CSP, and the CSP sends the records identified with these rids to the user. Fourth,

SGX re-encrypts the matched rids with sk to make it different from the one stored in the CSP,

and sends it to the user, using which the user can identify which records are the matched ones.

Finally, the user decrypts the matched records and get the data in plaintext.

Note that the CSP might learn the matched records by sending the same query to SGX

repeatedly and comparing the returned records since the matched records are always the same

but the unmatched ones are picked randomly. To avoid this issue, as mentioned before, the user

can append a timestamp to each encrypted query.

Algorithm 13 MAX(Ercds,rids,m)

1: max ← MINm
2: for i = 1 to |Ercds| do
3: rcd ← Decsk(Ercds[i])
4: if rcd.id ∈ rids then
5: f lag = 1;
6: else
7: f lag = 0;
8: if (rcd.Dm −max)∗ f lag > 0 then
9: t = 1

10: else
11: t = 0
12: max ← rcd.Dm ∗ t +max∗ (1− t)
13: return max

6.4 Complex Queries

Our system also supports the aggregate and join queries. In this section, we give the details to

secure the access pattern for those complex queries.

108

Algorithm 14 SUM(Ercds,rids,m)

1: sum ← 0
2: for i = 1 to |Ercds| do
3: rcd ← Decsk(Ercds[i])
4: if rcd.id ∈ rids then
5: f lag = 1;
6: else
7: f lag = 0;
8: sum ← sum+ rcd.Dm ∗ f lag
9: return sum

6.4.1 Aggregate Functions

For aggregate queries, such as ‘MIN’, ‘MAX’, ‘SUM’, and ‘AVG’, the matched records have to

be loaded into SGX for further computation, rather than returned to the user. To hide the record

access pattern, the matched records should be concealed from the CS. Like select queries,

for aggregate queries, our solution is to load a set of unmatched records in addition to the

matched ones to SGX. In this case, from the view of the CS, each loaded record could be the

matched one or a random one with 50%. The challenge is to prevent the CS learning which

records are the matched ones by mounting side channel attacks and ensure the correctness of

the returned aggregate value at the same time. The main idea of our solution is to process

all the loaded records in the same manner and constant time. In Algorithms 13 and 14, we

take the ‘MAX’ and ‘SUM’ as examples to show how our solution ensures both security and

correctness, respectively.

For both ‘MAX’ and ‘SUM’ functions, our algorithms take the loaded encrypted records,

including both the matched and random ones, the matched rids list and the field identifier

m as the inputs. SGX first decrypts each record. Note that it is unnecessary to decrypt the

unmatched records for getting the ‘MAX’ and ‘SUM’ values, yet it is necessary to ensure each

loaded record is processed in constant time. Second, SGX detects if each record is the matched

one or not by checking if its id is in the matched rids list, and this can be implemented by

building a hash table for the matched rids. The matched and random records are marked with

f lag = 1 and f lag = 0, respectively. Instead of skipping the unmatched records, the m-th value

of both the matched and unmatched records are multiplied by f lag and counted to the aggregate

functions (Line 8 in Algorithm 13 and Line 8 in Algorithm 14). Due to f lag = 0 for unmatched

records, counting unmatched records does not affect the correctness of the aggregate functions.

Moreover, by processing the matched and unmatched records in the same way, the CS is unable

to distinguish them by mounting page fault, timing and cache attacks. Recall that the replay

attack can be blocked by appending a timestamp to each encrypted query.

109

6.4.2 Join Queries

Algorithm 15 Join(tree1, tree2)

1: res ← /0
2: Nodes1[P]← 0, Nodes2[P]← 0
3: for i = 1 to � tree1.cntL

P � do
4: Load tree1.Encsk(fL

i) to Nodes1
5: Nodes1 ← Decryptsk(Nodes1)
6: len1 ← Number of keys in Nodes1
7: for j = 1 to � tree2.cntL

P � do
8: Load tree2.Encsk(fL

i) to Nodes2
9: Nodes2 ← Decryptsk(Nodes2)

10: len2 ← Number of keys in Nodes2
11: JoinSearch(Nodes1, len1,Nodes2, len2,res)
12: return res

Algorithm 16 JoinSearch(Nodes1, len1,Nodes2, len2,res)
1: i = 1, j = 1
2: while i ≤ len1 and j ≤ len2 do
3: if Nodes1.ki = Nodes2.k j then
4: t1 ← 1, t2 ← 1
5: else if Nodes1.ki > Nodes2.k j then
6: t1 ← 0, t2 ← 1
7: else
8: t1 ← 1, t2 ← 0
9: res ← res∪Nodes1.cidi ∗ t1 ∗ t2 ∪Nodes2.cid j ∗ t1 ∗ t2

10: r $← {1,2}, tr = 1− t3−r {i.e., t1 = 1− t2 or t2 = 1− t1}
11: i = i+ t1, j = j+ t2

A join query is a means for combining columns from one (self-join) or more tables by

using values in related fields common to each. Nested loop join [123], Hash join [124] and

sort-merge join (a.k.a. merge join) [125] are the common join algorithms used in variable

DBMSs. Unfortunately, they cannot be utilised to our system directly because of the leakage

of access pattern.

Tree loading. In this work, we focus on the join between two tables and implement the join

query by finding identical keys in the related B+ trees. Considering all the keys incur in the

database are stored in the leaf nodes of the related tree, SGX only searches the leaf nodes of

the joined trees. Therefore, hiding the index access pattern of join queries means hiding the

location of identical keys. To achieve this, we also need to answer the three questions given in

Section 6.3. Our answer to Question 1 is loading all the leaf nodes in the two trees fragment by

fragment. By doing so, the CS cannot learn the index access pattern by observing the loaded

nodes. The details are provided in Algorithms 15 and 16. Specifically, SGX reserves two EPC

110

pages Nodes1 and Nodes2 (Line 2, Algorithm 15), and loads each pair of fragments in the

two joined trees (Lines 3-11, Algorithms 15). Moreover, to thwart the page fault attack, each

loaded fragment should be accessed. Thus, SGX decrypts each loaded fragment (Line 5 and

9). After decrypting, SGX also gets the total number of keys, e.g., len1 and len2, included in

the two loaded fragments. In this section, for clarity, we use Nodes.key j∗(b−1)+i to present the

i-th key in Nodes[j], where i ∈ [1,b−1] and j ∈ [1,P].

Node searching. Considering the keys in each fragment are stored in order, the sort-merge

join algorithm is the most appropriate method to find the identical keys. However, the orig-

inal sort-merge algorithm is susceptible to timing and cache attacks. According to the orig-

inal sort-merge join algorithm, SGX first compares Nodes1.key1 with Nodes2.key1. When

Nodes1.key1 = Nodes2.key1, Nodes1.key2 and Nodes2.key2 will be loaded into the CPU for the

second round comparison; when Nodes1.key1 > Nodes2.key1, Nodes2.key2 will be loaded and

compared with Nodes1.key1; when Nodes1.key1 < Nodes2.key1, Nodes1.key2 will be loaded

and compared with Nodes2.key1; and so forth. In other words, the relationship between the

two searched keys determines which and how many keys should be loaded for the next round

of comparison. Furthermore, which and how many keys are loaded for each round of com-

parison affects the process time of each fragment pair and the state of the cache lines. For

instance, assume len1 ≤ len2, if there are len1 identical keys in the two fragments, two keys

will be loaded each time for the first len1 rounds of comparison, and SGX just needs to per-

form len2 rounds of comparison in total. On the contrary, if there is no identical key in the

two fragments, only one key will be loaded for each round of comparison (excluding the first

round), SGX has to perform len1 + len2 rounds of comparison. Thus, the time of searching

each pair of fragments depends on the number of identical keys they contained. By mounting

timing attacks, the CS can infer how many keys are identical in each pair of fragments. Even

worse, by mounting cache attacks, the CS can learn the exact locations of the identical keys,

since two keys will be loaded into the cache lines when there is a match.

To protect the index access pattern from the timing and cache attacks, we modify the sort-

merge algorithm. Our main idea is that no matter if there is a match or not between the two

compared keys, SGX always only loads the next key of either Nodes1 or Nodes2 for the next

round of comparison. In this case, no matter how many keys are identical, the two fragments

always need len2+ len1 rounds of comparisons, making the process resistant to timing attacks.

Moreover, no matter if each pair of compared keys are identical or not, SGX only loads one

new key into the cache lines for the next round of comparison. As a result, the CS cannot

infer the index access pattern via cache attacks. In short, our answer to Question 2 and 3 is

searching all the keys in each pair of fragments. The details of our solution are given in in

Algorithm 16, JoinSearch.

Basically, JoinSearch takes two fragments as input, and outputs the cids of the matched

111

keys between the two fragments. SGX uses two flags t1 and t2 to mark the relationships between

the checked two keys Nodes1.ki and Nodes2.k j (Lines 3 - 9). Specifically, if Nodes1.ki =

Nodes2.k j, t1 = 1 and t2 = 1. If Nodes1.ki > Nodes2.k j, t1 = 0 and t2 = 1. If Nodes1.ki <

Nodes2.k j, t1 = 1 and t2 = 0. In any case, Nodes1.cidi ∗ t1 ∗ t2 and Nodes2.cid j ∗ t1 ∗ t2 will

be added into the result res. However, only when t1 = 1 and t2 = 1, the cid is really added

into res. By doing so, SGX can process the three cases in the same manner while ensuring the

correctness of the result. In the next loop, Nodes1.ki+t1 and Nodes2.k j+t2 will be compared.

Thus, which key will be loaded depends on if t0 = 1 or t1 = 1. To avoid loading two new keys

when Nodes1.ki = Nodes2.k j, either t1 or t2 is turned into 0 (Line 10). As a consequence, when

Nodes1.ki+1 is loaded, the CS can learn Nodes1.ki = Nodes2.k j or Nodes1.ki < Nodes2.k j.

Otherwise, the CS can learn Nodes1.ki = Nodes2.k j or Nodes1.ki > Nodes2.k j. In both cases,

the CS can only successfully guess the relationship between the Nodes1.ki and Nodes2.k j with

50%.

6.5 Security Analysis

In this section, we first analyse the leakage in our scheme and then prove that our scheme

protects the access pattern from the CSP.

Leakage. To ensure the performance of the system, in this work, we do not make any effort

to hide the tree structure and database size. Basically, for each B+ tree1, the number of its

levels, the number of nodes at each level, and the size of each encrypted node are leaked to the

CSP. Moreover, from the search history, the CSP knows which tree is searched for each query,

and the length of each encrypted query. For the dataset, the number of records and the size

of each encrypted record are also leaked. Such information leakage could be minimised by

introducing dummy records and padding the queries and records into the same sizes. However,

dummy records and padding incur overheads, thus reducing the performance of the system. In

the following, we prove our scheme ensures the security of the access pattern for the queries

with the same type, the same number of predicates and searching over the same fields.

Theorem 6.1. Let α = Number o f returned records
Number o f matched records for select queries, and α = Number o f loaded records

Number o f matched records

for aggregate queries. When α is big enough, the proposed system protects the access pattern

from the CSP for range, aggregate, and join queries.

Proof. Let
−→
H be the query history of size T . In the following, we justify that both the index

and record access patterns are protected from the CSP for equality, range, aggregate and join

queries.

1There is a B+ tree for every field in the database.

112

Equality and Range queries. In our system, for both equality and range queries, SGX always

loads the whole tree into the enclave in batches, i.e., fragment by fragment. That is, the index

access pattern for each equality or range query is always the whole tree from the CSP per-

spective. Moreover, after each loading, which node is accessed inside the loaded fragment is

invisible to the CSP. Therefore, without mounting side channel attacks, the index access pattern

for equality and range queries is protected from the CSP.

We prove the index access pattern is also protected even when the CSP mounts page fault,

timing, and cache attacks. Recall that by mounting page fault attack the CSP can only learn

whether the loaded fragment is accessed or not, yet it cannot learn which nodes within the

fragment are accessed, since the CSP OS can only learn a 4 KB-granular page address [50,103].

In our solution, no matter if the loaded fragment contains the matched nodes or not, SGX

always searches some nodes. In this case, when mounting page fault attacks, the CSP always

gets the fault report no matter which fragment is being processed. However, the CSP cannot

tell if the fault report is caused by accessing the matched nodes or random nodes. Thus, the

index access pattern at page granularity is also protected from the CSP.

In our solution, each node has the same number of keys, and all the keys in the matched

node are searched in the same way for both the equality and range queries. For equality queries,

only one node is searched in each fragment. Therefore, for equality queries, each fragment is

processed in constant time no matter which node inside it is searched. Thus, the index access

pattern for equality queries is also protected against the timing attacks. For range queries, the

number of searched nodes in each fragment is randomised sine SGX always search several un-

matched nodes randomly. Consequently, the time of processing each fragment is also random.

However, no matter which nodes are searched, each node will be searched in constant time,

since they all have the same number of keys and processed in the same way. Hence, based on

the processing time for each fragment, the CSP can learn how many nodes are searched, but it

cannot infer which nodes inside the fragment are searched.

By mounting cache attacks, the CSP might learn which nodes are searched inside each

fragment for equality and range queries. However, it cannot tell which of them are the matched

ones since all the nodes are searched in an oblivious manner. Therefore, the index pattern is

also protected from cache attacks.

After searching the B+ tree, the next step for equality and range queries is returning the

matched records to users. While returning records to users, the CSP sees AR(
−→
H), which is

a sequence (R�
1, . . . ,R

�
T), where each R�

t consists of the matched records Rt and a set of un-

matched records. All the records stored in the CSP are encrypted using randomised encryption.

Therefore, the records in each R�
t are indistinguishable from a set of random bit strings by the

definition of randomised encryption. Note that although R�
t is revealed to the CSP, it cannot

differentiate matched records from the random ones, and it can infer the precise access pattern

113

with 1
2
|R�

t | probability, where |R�
t |= α|Rt |. By increasing the value of α , 1

2
|R�

t | can be negligible.

Another issue is if the CSP can infer search pattern from AR(
−→
H). Indeed, when Qi =

Q j(1 ≤ i, j ≤ T), the matched records must be the same, so that R�
i ∩R�

j �= /0. However, when

Qi �= Q j(1 ≤ i, j ≤ T), if CSP returns the same unmatched records to the user, R�
i ∩R�

j �= /0.

Since the encrypted queries are semantically secure, the CSP cannot tell whether the queries

involve the same keywords or not. Thus, the CSP cannot tell the intersection between any

two results are the matched or unmatched records. Only when R�
i ∩R�

j = /0, the CSP can learn

Qi �= Q j. On the contrary, it cannot determine if they are equal or not when R�
i ∩R�

j �= /0.

Aggregate query. The main difference between aggregates and select queries is that the

matched records are loaded into SGX for further processing rather than returned to the user

directly. Therefore, we just need to prove that the way to process the aggregate does not leak

the record access pattern to the CSP. Our solution takes two measures to protect the record

access pattern for aggregate operations. First, SGX loads a set of unmatched records to mask

the matched ones for further processing. Second, the matched and unmatched are processed in

a balanced way, where the matched and random records are processed in the same way without

affecting the correctness of the aggregate function. By doing so, the CSP cannot tell whether

each record is a matched one or not even when mounting side channel attacks. Therefore,

whether the CSP can infer the records access pattern depends on the value of α , i.e., the ratio

between loaded and matched records. As mentioned above, the probability of guessing the

records access pattern can be negligible by increasing the value of α .

Join query. For join queries, SGX also either returns the records to users or loads the matched

records for further process. In both cases, we have justified that the record access pattern is

protected from the CSP above. Therefore, we just need to justify the index access pattern is

protected from the CSP.

In our solution, for join queries, SGX always loads all the fragments into the last level of

the joined trees. That is, just via the manner of tree loading, the CSP cannot learn which leaf

nodes are searched by SGX. Like equality and range queries, SGX also accesses each pair of

fragments no matter if they contain identical keys or not. Thus, the CSP cannot learn the index

access pattern by mounting page fault attacks. Moreover, as described in Section 6.4.2, each

pair of fragments are processed in the same manner and constant time. Therefore, the index

access pattern of join queries is also protected from timing and cache attacks.

6.6 Performance Analysis

In this section, we demonstrate the performance of our scheme.

114

 5
 10
 15
 20
 25
 30
 35
 40

 1 2 4 8 16 32 64 128 256 512

Ti
m

e
in

 m
s

Number of pages per batch

Equality query
Range query

Fig. 6.3. Tree search time with 1 million keys. The branch factoring=32.

Table 6.2: The details of the tested queries.

Query
Q1 Select * from ORDERS where 1506 < O ORDERKEY < 2016
Q2 Select * from RANKINGS where pageRank > 12000
Q3 Select * from RANKINGS where pageRank > 1000

Q4
Select COUNT(*) from CFPB where (Product=“Credit card” or Product= “Mortgage”)
and Timely Response=“No” GROUP BY Bank

Q5

select sourceIP, totalRevenue, avgPageRank from (select sourceIP, AVG(pageRank) as
avgPageRank, SUM(adRevenue) as totalRevenue from Rankings as R, UserVisits as UV
where R.pageURL = UV.destURL AND UV.visitDate between Date(‘1980-01-01’) and
Date(‘1980-04-01’) GROUP BY UV.sourceIP) ORDER BY totalRevenue DESC LIMIT 1

6.6.1 Implementation

We implemented and evaluated the performance of our system on an Intel NUC 7i3BNH, with

a 4-core Intel i3-7100U 2.4GHZ processor with SGX enabled and 8GB RAM. The prototype of

the proposed system is implemented in C/C++. The cryptography primitives used on the user

side, such as the records and indices encryption, are implemented based on Libgcrypt 1.8.2

library [126]. The trusted code on SGX is implemented based on SGX SDK 2.0. Specifically,

we use ‘sgx rijndael128GCM decrypt’ to recover the plaintext of loaded nodes in SGX. The

performance is tested on real SGX hardware. All the times presented in the following are

averaged over 100 runs.

6.6.2 TPC-H Benchmarking

We first evaluated the performance of our scheme with TPC-H [86] dataset. The table used in

our experiment is the ‘ORDER’ table, which consists of 1.5 million records and 9 fields. We

built a B+ tree index for ‘O ORDERKEY’ field consisting of 1032331 keys (29 of them are

dummy keys).

115

Table 6.3: Comparison with ObliDB and the baseline.

Data Set Keys in
B+ Tree

#Pages
/Batch Query Result

Size
Our
Work

ObliDB
Indexed Speedup Baseline Overhead

Range queries
ORDERS 1032331 8 Q1 125 22.15ms – – 0.815ms 27.2×
RANKINGS 1143 1 Q2 1 0.37ms 2.14ms 5.78× 0.072ms 5.14×
RANKINGS 1143 1 Q3 88 0.37ms 126ms 340.5× 0.077ms 4.81×

Aggregates and Joins
CFPB 9 1 Q4 – 1.67ms 0.869s 520.4× 1.5ms 1.11×
UNIVERSITIES 20631 1 Q5 91 0.466s 19.56s 4.79× 0.455s 1.02×

6.6.2.1 Equality and Range Queries

For a traditional B+ tree, the search complexity is O(logb N), where N represents the number

of nodes and b is a branching factor of the tree. However, in our system, in order to resist

side channel attacks, the B+ tree is accessed in an oblivious manner, where the nodes searched

in each fragment could be those matching the query or randomly picked. Specifically, within

every P nodes, at least one of them is accessed. Thus, the search complexity for equality and

range queries is O(N
P) in our system.

To evaluate the performance of equality and range queries, we set the branch factoring to 32

and evaluated the B+ tree search time with different batch sizes, i.e., the number of fragments

loaded per batch, which is also the number of EPC pages reserved in the enclave. We tested

the B+ tree searching time for both the equality and range queries by changing the batch size

from 1 to 512. The result is shown in Fig. 6.3.

From Fig. 6.3, first we can see that the search time of executing an equality query is

much less than executing a range query. That is because only one node should be searched in

each page for equality queries, however, multiple nodes should be searched for range queries.

Second, we see the searching time goes down when loading more pages each time, and reaches

the lowest point when loading 8 pages per batch, which are about 10.8 milliseconds (ms) and

22.15 ms for equality and range queries, respectively. However, when loading more than 8

pages, the searching time goes up again. That is because there is less context switching between

the untrusted and trusted code when loading more nodes in each batch. However, when loading

more than 8 pages, the enclave memory is exhausted, and part of the data has to be swapped in

and out between the enclave and the disk, which is significantly costly.

We also implemented the second construction (i.e., Construction 2) of HardIDX [103] as

a baseline, where only the matched nodes in the B+ tree are loaded into SGX for searching.

Comparing with the baseline, our scheme takes several strategies to protect the access pattern

from the CSP. In Table 6.3, we compare the search time of a simple range query (i.e., Q1 in

Table 6.2) with the baseline case. When loading 8 pages per batch, the strategies taken in

our scheme to protect the index access pattern incurs 27.2× performance overheads for range

116

 0
 2
 4
 6
 8

 10
 12
 14

 1 2 3 4 5 6 7 8 9 10

Ti
m

e
in

 m
s

#Loaded records/#Matched records

Full-protection
Baseline
Semi-protection

Fig. 6.4. The time of finding the MAX value among 1000 matched records.

queries.

6.6.2.2 Aggregate Queries

Once the search operation is finished, the next step for the queries with aggregate functions is

to load the matched records into SGX and do further computations. When loading the matched

records into SGX, the records access pattern should also be hidden from the CSP. Otherwise,

the CSP can still mount leakage-based attacks. Our scheme takes two measures to protect

records access pattern from the CSP. First, SGX loads a set of random records apart from

the matched ones, such that the matched ones are blinded. As discussed in Section 6.5, the

probability of inferring the access pattern is affected by the number of loaded random records.

Roughly speaking, the more records loaded, the more difficult for the CSP to infer the access

pattern. However, the more records loaded also means the more work is expected to be done

on SGX. In the second experiment, we tested the time of processing aggregate functions with

different α values. Second, to ensure the CSP cannot infer if each loaded record is a random

one or a matched one by mounting side channel attacks, SGX also processes the records in a

balanced way, where the matched and random records are processed in the same way without

affecting the correctness of the aggregate function.

In our experiments, we considered the ‘MAX’ aggregate function as an example to show

the processing overhead on SGX. Moreover, we compared the performance of our scheme

with a baseline case where SGX only loads matched records, and a semi-protection case where

SGX also loads random records but ignores side channel attacks. We call the solution taking

the above two measures as full-protection. For the test, a query with 1000 matched records

was tested over the ‘ORDER’ table. The test result is shown in Fig. 6.4. First, Fig. 6.4 shows

that the processing times of both the full-protection and semi-protection cases increase linearly

with α . That is, the more random records loaded, the more computation is needed on SGX,

117

 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6

 1 2 4 8 16 32 64 128 256 512

Ti
m

e
in

 s

Number of pages per batch

Our work
Baseline

Fig. 6.5. The time of executing a join query.

which also ensures the higher security level of the access pattern. Moreover, the two lines

almost overlap, which means the overhead to thwart side channel attacks is much less the one

to hide the record access pattern.

6.6.2.3 Join Queries

To evaluate the performance of join queries, we tested a join query between ‘ORDERS’ and

‘CUSTMERS’ tables by changing the batch sizes. The tested query is ‘select ORDERS.O

ORDERDATE, CUSTOMER.C NAME from ORDERS inner join CUSTOMER on ORDERS.

O CUSTKEY=CUSTOMER.C CUSTKEY’, which returns 99933 matched records. The ‘CUS-

TOMER’ table contains 150,000 different ‘C CUSTKEY’ values.

To better show the overhead increased by the index access pattern protecting techniques, we

also compared the performance of our solution with a baseline case, where only the fragments

containing matched keys are searched. The test result is shown in Fig. 6.5.

Fig 6.5 shows that the query execution time decreases with batch size, which is different

from the case of equality and range queries. The reason is that, in equality and range queries,

the search time is significantly less than other operations, such as the context switching between

trusted and untrusted code and memory managing. However, in join queries, the searching time

is much higher than others, since much more keys should be searched. In the tested join queries,

around 70% time is taken by searching the keys. Although the data being swapped in and out

between the enclave and the untrusted memory when loading more than 8 pages per batch, the

search time is getting better. Thus, the overall executing time of the join query decreases with

batch size even when loading more than 8 pages per batch.

Fig. 6.5 also shows that the gap between our approach and the baseline gets closer when

increasing the number of pages loaded each batch. They almost take the same time when

loading more than 128 pages per batch.

118

6.6.3 Big Data Benchmarking

ObliDB [52] is one of the ORAM-based solutions that can also protect the access pattern by

using SGX. In [52], Eskandarian et al. have shown that their indexed solution is much more

efficient than Opaque [105]. In the following, we will show our scheme is much more efficient

than ObliDB indexed solution.

For the comparison, as done in ObliDB, we evaluated our scheme with the datasets and

queries in Big Data Benchmark [51]. Specifically, we tested two range queries on two ‘RANK-

INGS’ tables, and two complex queries with aggregates and joins operations on ‘CFPB’,

‘RANKINGS’, and ‘USERVISITS’ tables. The tested queries and the information of the tested

datasets and are shown in Table 6.2 and 6.3, respectively.

We downloaded the code of ObliDB from [127] and tested its performance on our own

machine. Moreover, we also tested the baseline implementation, where only the matched nodes

are loaded into SGX for search, with the same queries and datasets. For testing our scheme,

the branching factor was fixed to 4, only 1 page was loaded per batch, and the ratio α was set

to be 2. Note that our scheme will perform better when loading 8 pages per batch.

The test results for our scheme, ObliDB, and the baseline are shown in Table 6.3. For range

queries, in our scheme, both Q2 and Q3 took only 0.37 ms, including both the B+ tree search

time and the rids list processing time. However, ObliDB is built based on ORAM, making

its performance sensitive to the result size. When the result sizes are 1 and 135, ObliDB took

2.14 ms and 216 ms, respectively. Our scheme achieves at least 5.78× speedup than ObliDB

indexed solution for range queries. Comparing with the baseline, our solution increases around

5× overhead.

For aggregates and joins, our scheme also outperforms ObliDB significantly. Specifically,

for the query with ‘GROUP BY’ and ‘COUNT’, i.e., Q4, our scheme is over 520× faster than

ObliDB, and introduces only 1.11× overhead when compared with the baseline. For the join

query Q5, our scheme outperforms ObliDB by 4.79× and is 1.02× slower than the baseline.

6.7 Related Work

In [103], Fuhry et al. present two SGX-assisted constructions for search over encrypted data.

To support sub-linear search, the B+ tree index is utilised in both constructions. In the first

construction, the encrypted index tree is entirely loaded into the enclave for performing search.

When the index size is large, the enclave pages have to be swapped in and out due to the enclave

memory limitation, which affects the performance significantly. Moreover, the untrusted server

could observe data access inside the enclave with a page-level granularity by leveraging the

page fault side channel attack [109]. In their second construction, only the nodes involved in

119

the tree traversal are loaded into the enclave. In this case, the accessed nodes are leaked to the

CSP directly.

In [104], Gribov et al. also present a B+ tree-based SGX-assisted encrypted database, fully

supporting SQL queries, called StealthDB. They also reduce the context switching overhead

between the enclave and the untrusted server memory by 5×−10× by using an exit-less com-

munication mechanism [128]. Unfortunately, StealthDB still leaks the index access pattern

since it only loads the matched nodes into the enclave for performing a search operation.

Eskandarian and Zaharia [52] also proposed two basic methods for the data storage and

access, named linear and indexed storage. For linear storage, SGX searches each record one

by one and then loads the matched records with ORAM primitives. This method can conceal

the access pattern effectively, but it incurs significantly high computation overheads. In the

indexed storage, a B+ tree is searched first to narrow down the records to be scanned. However,

the access pattern over the B+ tree is leaked.

Zheng et al. [105] study how to leverage SGX to secure distributed analytical workloads,

and propose a system called Opaque. By sorting and shuffling the data, Opaque could avoid

the access pattern leakage. However, Opaque linearly scans and sorts the entire database to

answer a query, which is inefficient for large databases. Further, they do not give the solution

to address side channel attacks, from which the attacker could still infer sensitive information.

In [106], Sasy et al. design and implement a library of ORAM primitives running on SGX

that can defend against side channel attacks. However, in their design, the enclave has to store

a map between each distinct value and its storage location. Due to the limited memory of SGX

enclave, their implementation is not scalable to the databases with a large number of distinct

values. In particular, when each distinct value in the database only occurs once, the position

map has the same size as the database.

In [107], Costa et al. also have explored the design of ORAM for SGX. They present a

new design of hierarchical ORAM that is suitable for SGX. By using the multilevel adaptive

hashing scheme [129], their design optimises the bandwidth cost and outperforms the Circuit

ORAM [130] by 8×. However, this solution suffers from the same issue as [106], i.e., it

requires large long-term storage on SGX.

As summarised in Table 6.1, none of above schemes can achieve our objective, i.e., pre-

serving the access pattern privacy by using SGX while ensuring efficient search over encrypted

data without any long-term storage on SGX.

6.8 Conclusions and Future Work

In this chapter, we introduce an approach that supports search over encrypted data and pre-

serves the privacy of the access pattern using SGX. B+ tree indices are built in order to ensure

120

the search efficiency. By loading the tree nodes page by page and accessing the nodes in a bal-

anced manner, the access pattern is also protected against page fault, timing, and cache attacks.

Moreover, our solution can process large databases efficiently without requiring long-term stor-

age on SGX.

In this chapter, we focus on the search operation and do not consider the insert and delete

operations over the B+ tree. As future work, we aim to investigate how to securely support

insert and delete queries. Moreover, we will explore the techniques to thwart other side channel

attacks, such as the branch shadowing attack [111].

121

Chapter 7

Conclusions and Future Work

In this chapter, we summarise our contributions in this thesis and discuss possible future direc-

tions.

7.1 Summary

In cloud computing, SE could protect the outsourced data from powerful adversaries. How-

ever, state-of-the-art SE schemes are insecure due to sensitive information leakage, such as the

search, access, and size patterns. In the literature, many recent works have shown that these

patterns can be leveraged by adversaries to recover the content of queries and records. To effec-

tively protect the outsourced data, it is necessary to minimise information leakage and ensure

the forward and backward privacy simultaneously. In this thesis, we propose three different SE

schemes for relational databases that not only ensure the confidentiality of the data, but also

resist existing leakage-based attacks. Moreover, for the databases supporting multiple users to

read and write the data, our SE schemes provide scalable key management methods that do not

need to update the key or re-encrypting the data when revoking compromised users.

Before giving our solutions, we first identify the leakage issues remaining in existing SE

schemes and define four different levels of leakage profiles for encrypted relational database so-

lutions. After that, we investigate the existing leakage-based attacks. Based on the techniques

and leakage leveraged on these attacks, we propose our countermeasures to thwart them. For

instance, the access pattern can be protected by shuffling and re-randomising the searched

records after executing each query. To protect the search and size patterns, it is necessary to

randomise the encrypted queries and insert dummy records, respectively. Moreover, the cor-

relation among the search, size, and access patterns should be broken. Otherwise, the attacker

could infer the other two based on the leaked one. To break the correlation between the search

and size patterns, our idea is to ensure all the queries either always match the same number of

123

records or always match different numbers of records even if the same query is repeated. We

give solutions for both static and dynamic databases. The basic idea is to divide the elements

in each field into groups and pad the elements in the same group into the same occurrence with

dummy records. As a result, the queries searching for the terms in the same group will match

the same number of records, and then the attackers cannot infer the search pattern of the queries

in the same group based on their size patterns.

By combining the countermeasures, we propose three different solutions that minimise in-

formation leakage and withstand leakage-based attacks: ObliviousDB, P-McDb, and the SGX-

assisted encrypted database. All of them can protect the search, access, and size patterns from

the public CSPs effectively, and ensure the forward and backward privacy at the same time.

ObliviousDB, P-McDb, and the SGX-assisted encrypted database are designed for the hy-

brid cloud, multi-cloud, and SGX-enabled cloud settings, respectively. Both ObliviousDB and

P-McDb support multiple users to read and write the databases without sharing the secret keys

among all the users. Furthermore, revoking a user does not require to updating the secrets keys

and re-encrypting the records. The SGX-assisted encrypted database is a single-user scheme.

Comparing with ObliviousDB, P-McDb is significantly more efficient. Moreover, P-McDb

does not rely on any trusted entities, but it suffers from the possible collusion attack between the

two public CSPs. In addition, P-McDb requires more operations on the user side. Specifically,

in P-McDb, the users have to filter out the returned dummy records before decryption, whereas,

in ObliviousDB, this operation is performed by the OPS.

The role of WSS in P-McDb is similar to the role of the OPS in ObliviousDB. However, we

cannot deploy the OPS in an untrusted public CSP, since it stores the flags that used to filter out

dummy records for users in cleartext. On the contrary, the WSS could be deployed in a trusted

private cloud. However, due to the storage of NDB, the WSS has a larger storage burden than

the OPS.

Among the three proposed solutions, the SGX-assisted encrypted database is the most ef-

ficient one due to the usage of B+ tree indexing and the trusted code execution environment.

Moreover, it supports complex queries and does not have collusion issues. However, it is cur-

rently a single-user scheme and only used for protecting static databases.

Above all, the three proposed schemes have both benefits and limitations. The cloud service

customers can choose the scheme based on their resources and requirements.

7.2 Future Work

The research described in this thesis can be extended along several directions. In the following,

we list several examples.

Leakage investigation for complex queries. In this thesis, the proposed solutions are mainly

124

designed to minimise information leakage for simple equality queries with only one predicate.

When considering the queries with multiple predicates, our idea is to check if each predicate

matches the record and determine the final result according to the conjunctions between the

predicates. However, by doing so, the attacker might learn more information. One of our future

directions is to analyse the information leaked when executing complex query apart from the

search, access, and size patterns, and then investigate if an attacker could leverage the leakage

to recover more useful information.

Active attacks detection. Another interesting direction is to ensure the correctness and in-

tegrity of search results against active malicious CSPs. In this thesis and the majority of other

existing SE schemes, the CSP is assumed to be honest-but-curious, which means the CSP will

follow the designed protocol honestly and return the correct result to users. However, the com-

promised CSP might not that honest and mount active attacks, such as tampering the data or

returning random data to users. The techniques to check the correctness and integrity of the

data are required in this scenario.

In addition, in both ObliviousDB and P-McDb, the access pattern privacy is protected by

shuffling and re-randomising searched records. In P-McDb, the WSS is untrusted. It is neces-

sary to ensure the WSS really performs the shuffling and re-randomising properly. Therefore,

investigating the methods to supervise the behaviour of the untrusted CSPs is also one of our

future work.

The application of SE schemes in emerging application scenarios. Initially, most of the

SE schemes were designed to protect the file collections or relational databases stored in cloud

servers. In recent years, SE schemes are gradually applied into several other scenarios, such

as outsourced middleboxes [131–133], Content Delivery Network (CDN) [134–136] and pub-

lish/subscribe systems [137–139]. More recently, applications of SE schemes have received

much attention from both the academia and the industry, such as the blockchain [140] and edge

computing [141]. Using the concept of SE to protect the data in emerging application scenarios

is also an interesting research direction.

125

References

[1] Amazon S3. https://aws.amazon.com/s3/. Last accessed: September 17,

2018. 1

[2] Dan Boneh, Giovanni Di Crescenzo, Rafail Ostrovsky, and Giuseppe Persiano. Public

key encryption with keyword search. In EUROCRYPT 2004, volume 3027 of Lecture

Notes in Computer Science, pages 506–522. Springer, 2004. 2

[3] Dawn Xiaodong Song, David Wagner, and Adrian Perrig. Practical techniques for

searches on encrypted data. In S&P 2000, pages 44–55. IEEE Computer Society, 2000.

2, 3, 62

[4] Muhammad Rizwan Asghar, Giovanni Russello, Bruno Crispo, and Mihaela Ion. Sup-

porting complex queries and access policies for multi-user encrypted databases. In

CCSW 2013, pages 77–88. ACM, 2013. 2, 3, 5, 11, 14, 15, 19, 39, 42, 44, 64

[5] Ning Cao, Cong Wang, Ming Li, Kui Ren, and Wenjing Lou. Privacy-preserving multi-

keyword ranked search over encrypted cloud data. IEEE Trans. Parallel Distrib. Syst.,

25(1):222–233, 2014. 2, 3, 11, 63

[6] David Cash, Joseph Jaeger, Stanislaw Jarecki, Charanjit S. Jutla, Hugo Krawczyk,

Marcel-Catalin Rosu, and Michael Steiner. Dynamic searchable encryption in very-large

databases: Data structures and implementation. In NDSS 2014. The Internet Society,

2014. 2, 3, 11

[7] Yan-Cheng Chang and Michael Mitzenmacher. Privacy preserving keyword searches

on remote encrypted data. In ACNS 2005, volume 3531 of Lecture Notes in Computer

Science, pages 442–455, 2005. 2, 3, 11, 15, 23

[8] Reza Curtmola, Juan A. Garay, Seny Kamara, and Rafail Ostrovsky. Searchable sym-

metric encryption: improved definitions and efficient constructions. In CCS 2006, pages

79–88. ACM, 2006. 2, 3, 11, 15, 63, 64

127

REFERENCES

[9] Luca Ferretti, Fabio Pierazzi, Michele Colajanni, and Mirco Marchetti. Scalable ar-

chitecture for multi-user encrypted SQL operations on cloud database services. IEEE

Trans. Cloud Computing, 2(4):448–458, 2014. 2, 3, 11, 64

[10] Eu-Jin Goh. Secure indexes. IACR Cryptology ePrint Archive, 2003:216, 2003. 2, 3

[11] Florian Hahn and Florian Kerschbaum. Searchable encryption with secure and efficient

updates. In SIGSAC 2014, pages 310–320. ACM, 2014. 2, 3, 11, 13, 64

[12] Isabelle Hang, Florian Kerschbaum, and Ernesto Damiani. ENKI: access control for

encrypted query processing. In SIGMOD 2015, pages 183–196. ACM, 2015. 2, 3, 11,

64

[13] Yong Ho Hwang and Pil Joong Lee. Public key encryption with conjunctive keyword

search and its extension to a multi-user system. In Pairing 2007, volume 4575 of Lecture

Notes in Computer Science, pages 2–22. Springer, 2007. 2, 3

[14] Seny Kamara, Charalampos Papamanthou, and Tom Roeder. Dynamic searchable sym-

metric encryption. In CCS 2012, pages 965–976. ACM, 2012. 2, 3, 11, 64

[15] Seny Kamara and Charalampos Papamanthou. Parallel and dynamic searchable sym-

metric encryption. In FC 2013, volume 7859 of Lecture Notes in Computer Science,

pages 258–274. Springer, 2013. 2, 3, 11

[16] Muhammad Naveed, Manoj Prabhakaran, and Carl A. Gunter. Dynamic searchable

encryption via blind storage. In SP 2014, pages 639–654. IEEE Computer Society,

2014. 2, 3, 11, 22, 62

[17] Raluca A. Popa, Catherine M. S. Redfield, Nickolai Zeldovich, and Hari Balakrishnan.

CryptDB: Protecting confidentiality with encrypted query processing. In SOSP 2011,

pages 85–100. ACM, 2011. 2, 3, 11, 12, 14, 15, 39, 64

[18] Muhammad I. Sarfraz, Mohamed Nabeel, Jianneng Cao, and Elisa Bertino. DBMask:

Fine-grained access control on encrypted relational databases. In CODASPY 2015, pages

1–11. ACM, 2015. 2, 3, 11, 12, 15, 64

[19] Emil Stefanov, Charalampos Papamanthou, and Elaine Shi. Practical dynamic search-

able encryption with small leakage. In NDSS 2013, volume 71, pages 72–75, 2014. 2,

3, 11, 23, 63

[20] Boyang Wang, Yantian Hou, Ming Li, Haitao Wang, and Hui Li. Maple: Scalable multi-

dimensional range search over encrypted cloud data with tree-based index. In ASIA CCS

2014, pages 111–122. ACM, 2014. 2, 3

128

REFERENCES

[21] Bing Wang, Shucheng Yu, Wenjing Lou, and Y. Thomas Hou. Privacy-preserving multi-

keyword fuzzy search over encrypted data in the cloud. In INFOCOM 2014, pages

2112–2120. IEEE, 2014. 2, 3

[22] Yanjiang Yang, Joseph K. Liu, Kaitai Liang, Kim-Kwang Raymond Choo, and Jianying

Zhou. Extended proxy-assisted approach: Achieving revocable fine-grained encryption

of cloud data. In ESORICS 2015, volume 9327 of Lecture Notes in Computer Science,

pages 146–166. Springer, 2015. 2, 3, 11, 64

[23] Attila Altay Yavuz and Jorge Guajardo. Dynamic searchable symmetric encryption with

minimal leakage and efficient updates on commodity hardware. In SAC 2015, volume

9566 of Lecture Notes in Computer Science, pages 241–259. Springer, 2015. 2, 3

[24] Wenhai Sun, Shucheng Yu, Wenjing Lou, Y. Thomas Hou, and Hui Li. Protecting your

right: Attribute-based keyword search with fine-grained owner-enforced search autho-

rization in the cloud. In INFOCOM 2014, pages 226–234. IEEE, 2014. 2, 3, 11, 64

[25] Mohammad Saiful Islam, Mehmet Kuzu, and Murat Kantarcioglu. Access pattern dis-

closure on searchable encryption: Ramification, attack and mitigation. In NDSS 2012.

The Internet Society, 2012. 2, 16

[26] Muhammad Naveed, Seny Kamara, and Charles V. Wright. Inference attacks on

property-preserving encrypted databases. In SIGSAC 2015, pages 644–655. ACM, 2015.

2, 15, 16

[27] David Cash, Paul Grubbs, Jason Perry, and Thomas Ristenpart. Leakage-abuse attacks

against searchable encryption. In SIGSAC 2015, pages 668–679. ACM, 2015. 2, 12, 15,

17, 18, 20

[28] Yupeng Zhang, Jonathan Katz, and Charalampos Papamanthou. All your queries are

belong to us: The power of file-injection attacks on searchable encryption. In USENIX

Security 2016, pages 707–720. USENIX Association, 2016. 2, 3, 15, 17

[29] Georgios Kellaris, George Kollios, Kobbi Nissim, and Adam O’Neill. Generic attacks

on secure outsourced databases. In SIGSAC 2016, pages 1329–1340. ACM, 2016. 2, 13,

15, 18, 22

[30] Mohamed Ahmed Abdelraheem, Tobias Andersson, and Christian Gehrmann. Infer-

ence and record-injection attacks on searchable encrypted relational databases. IACR

Cryptology ePrint Archive, 2017:24, 2017. 2, 17

129

REFERENCES

[31] David Cash, Stanislaw Jarecki, Charanjit S. Jutla, Hugo Krawczyk, Marcel-Catalin

Rosu, and Michael Steiner. Highly-scalable searchable symmetric encryption with sup-

port for boolean queries. In CRYPTO 2013, volume 8042 of Lecture Notes in Computer

Science, pages 353–373. Springer, 2013. 3, 11

[32] Raphael Bost. ∑oϕoς : Forward secure searchable encryption. In SIGSAC 2016, pages

1143–1154. ACM, 2016. 3, 11, 23, 63

[33] Mohammad Etemad, Alptekin Küpçü, Charalampos Papamanthou, and David Evans.

Efficient dynamic searchable encryption with forward privacy. PoPETs, 2018(1):5–20,

2018. 3

[34] Raphaël Bost, Brice Minaud, and Olga Ohrimenko. Forward and backward private

searchable encryption from constrained cryptographic primitives. In CCS 2017, pages

1465–1482. ACM, 2017. 3, 11, 23

[35] Cong Zuo, Shifeng Sun, Joseph K. Liu, Jun Shao, and Josef Pieprzyk. Dynamic search-

able symmetric encryption schemes supporting range queries with forward (and back-

ward) security. In ESORICS 2018, pages 228–246. Springer, 2018. 3, 11, 23

[36] Rafail Ostrovsky. Efficient computation on Oblivious RAMs. In STOC 1990, pages

514–523. ACM, 1990. 3

[37] Emil Stefanov, Marten van Dijk, Elaine Shi, Christopher W. Fletcher, Ling Ren, Xi-

angyao Yu, and Srinivas Devadas. Path ORAM: An extremely simple oblivious RAM

protocol. In SIGSAC 2013, pages 299–310. ACM, 2013. 3, 13

[38] Oded Goldreich and Rafail Ostrovsky. Software protection and simulation on oblivious

rams. J. ACM, 43(3):431–473, 1996. 3, 13

[39] Pascal Paillier. Public-key cryptosystems based on composite degree residuosity classes.

In EUROCRYPT 1999, volume 1592 of Lecture Notes in Computer Science, pages 223–

238. Springer, 1999. 3, 22, 63

[40] Craig Gentry. Fully homomorphic encryption using ideal lattices. In STOC 2009, pages

169–178. ACM, 2009. 3

[41] Yuval Ishai, Eyal Kushilevitz, Steve Lu, and Rafail Ostrovsky. Private large-scale

databases with distributed searchable symmetric encryption. In CT-RSA 2016, volume

9610 of Lecture Notes in Computer Science, pages 90–107. Springer, 2016. 3, 6, 11, 13,

15, 18, 63, 85, 91

130

REFERENCES

[42] Bharath Kumar Samanthula, Wei Jiang, and Elisa Bertino. Privacy-preserving complex

query evaluation over semantically secure encrypted data. In ESORICS 2014, volume

8712 of Lecture Notes in Computer Science, pages 400–418. Springer, 2014. 3, 6, 11,

13, 15, 17, 22, 62, 70, 85

[43] Bing Wang, Wei Song, Wenjing Lou, and Y. Thomas Hou. Inverted index based multi-

keyword public-key searchable encryption with strong privacy guarantee. In INFOCOM

2015, pages 2092–2100. IEEE, 2015. 3, 11, 22, 63

[44] RightScale 2018. https://www.rightscale.com/lp/

state-of-the-cloud?campaign=7010g0000016JiA. Last accessed:

August 7, 2018. 5, 6, 39

[45] Changyu Dong, Giovanni Russello, and Naranker Dulay. Shared and searchable en-

crypted data for untrusted servers. In DBSec 2008, volume 5094 of Lecture Notes in

Computer Science, pages 127–143. Springer, 2008. 5, 39, 44

[46] Shujie Cui, Muhammad Rizwan Asghar, Steven D. Galbraith, and Giovanni Russello.

Obliviousdb: Practical and efficient searchable encryption with controllable leakage.

In FPS 2017, volume 10723 of Lecture Notes in Computer Science, pages 189–205.

Springer, 2018. 5, 15

[47] Dan Boneh, Craig Gentry, Shai Halevi, Frank Wang, and David J. Wu. Private database

queries using somewhat homomorphic encryption. In ACNS 2013, pages 102–118.

Springer, 2013. 6

[48] Adi Akavia, Dan Feldman, and Hayim Shaul. Secure search via multi-ring fully homo-

morphic encryption. IACR Cryptology ePrint Archive, 2018:245, 2018. 6

[49] Shujie Cui, Muhammad Rizwan Asghar, Steven D. Galbraith, and Giovanni Russello.

P-McDb: Privacy-preserving search using multi-cloud encrypted databases. In CLOUD

2017, pages 334–341. IEEE Computer Society, 2017. 6, 15

[50] Victor Costan and Srinivas Devadas. Intel SGX explained. IACR Cryptology ePrint

Archive, 2016:86, 2016. 6, 93, 96, 113

[51] AMPLAB, University of Califorian. Big data benchmark. https://amplab.cs.

berkeley.edu/benchmark/. Last accessed: March 2, 2018. 6, 95, 119

[52] Saba Eskandarian and Matei Zaharia. An oblivious general-purpose SQL database for

the cloud. CoRR, abs/1710.00458, 2017. 6, 93, 94, 95, 119, 120

131

REFERENCES

[53] Shujie Cui, Sana Belguith, Ming Zhang, Muhammad Rizwan Asghar, and Giovanni

Russello. Preserving access pattern privacy in sgx-assisted encrypted search. In ICCCN

2018. IEEE, 2018. 6, 15, 94

[54] Stanislaw Jarecki, Charanjit S. Jutla, Hugo Krawczyk, Marcel-Catalin Rosu, and

Michael Steiner. Outsourced symmetric private information retrieval. In SIGSAC 2013,

pages 875–888. ACM, 2013. 11, 64

[55] Christoph Bösch, Andreas Peter, Bram Leenders, Hoon Wei Lim, Qiang Tang, Huaxiong

Wang, Pieter H. Hartel, and Willem Jonker. Distributed searchable symmetric encryp-

tion. In PST 2014, pages 330–337. IEEE Computer Society, 2014. 11, 67, 91

[56] Guoxing Chen, Ten-Hwang Lai, Michael K. Reiter, and Yinqian Zhang. Differentially

private access patterns for searchable symmetric encryption. In INFOCOM 2018, pages

810–818. IEEE, 2018. 11, 63

[57] Feng Bao, Robert H. Deng, Xuhua Ding, and Yanjiang Yang. Private query on encrypted

data in multi-user settings. In ISPEC 2008, volume 4991 of Lecture Notes in Computer

Science, pages 71–85. Springer, 2008. 11, 64

[58] Raluca A. Popa and Nickolai Zeldovich. Multi-key searchable encryption. IACR Cryp-

tology ePrint Archive, 2013:508, 2013. 11, 64

[59] Qiang Tang. Nothing is for free: Security in searching shared and encrypted data. IEEE

Trans. Information Forensics and Security, 9(11):1943–1952, 2014. 11, 64

[60] Aggelos Kiayias, Ozgur Oksuz, Alexander Russell, Qiang Tang, and Bing Wang. Effi-

cient encrypted keyword search for multi-user data sharing. In ESORICS 2016, volume

9878 of Lecture Notes in Computer Science, pages 173–195. Springer, 2016. 11, 64

[61] Panagiotis Rizomiliotis and Stefanos Gritzalis. ORAM based forward privacy preserv-

ing dynamic searchable symmetric encryption schemes. In CCSW 2015, pages 65–76.

ACM, 2015. 11, 63

[62] Xiangfu Song, Changyu Dong, Dandan Yuan, Qiuliang Xu, and Minghao Zhao. For-

ward private searchable symmetric encryption with optimized I/O efficiency. CoRR,

abs/1710.00183, 2017. 11, 23

[63] Shifeng Sun, Xingliang Yuan, Joseph K. Liu, Ron Steinfeld, Amin Sakzad, Viet Vo, and

Surya Nepal. Practical backward-secure searchable encryption from symmetric punc-

turable encryption. In CCS 2018, pages 763–780. ACM, 2018. 11

132

REFERENCES

[64] Thang Hoang, Attila Altay Yavuz, and Jorge Guajardo. Practical and secure dynamic

searchable encryption via oblivious access on distributed data structure. In ACSAC 2016,

pages 302–313. ACM, 2016. 11, 67, 70, 91

[65] Arvind Arasu, Spyros Blanas, Ken Eguro, Raghav Kaushik, Donald Kossmann, Rav-

ishankar Ramamurthy, and Ramarathnam Venkatesan. Orthogonal security with ci-

pherbase. In CIDR 2013, Sixth Biennial Conference on Innovative Data Systems Re-

search, Asilomar, CA, USA, January 6-9, 2013, Online Proceedings. www.cidrdb.org,

2013. 12, 15

[66] Rishabh Poddar, Tobias Boelter, and Raluca Ada Popa. Arx: A strongly encrypted

database system. IACR Cryptology ePrint Archive, 2016:591, 2016. 13, 15, 16, 19, 63

[67] Ben A. Fisch, Binh Vo, Fernando Krell, Abishek Kumarasubramanian, Vladimir

Kolesnikov, Tal Malkin, and Steven M. Bellovin. Malicious-client security in blind

seer: A scalable private DBMS. In SP 2015, pages 395–410. IEEE Computer Society,

2015. 13, 15

[68] Stephen Tu, M. Frans Kaashoek, Samuel Madden, and Nickolai Zeldovich. Processing

analytical queries over encrypted data. PVLDB, 6(5):289–300, 2013. 15

[69] Antonis Papadimitriou, Ranjita Bhagwan, Nishanth Chandran, Ramachandran Ramjee,

Andreas Haeberlen, Harmeet Singh, Abhishek Modi, and Saikrishna Badrinarayanan.

Big data analytics over encrypted datasets with seabed. In OSDI 2016, pages 587–602.

USENIX Association, 2016. 15

[70] Vasilis Pappas, Fernando Krell, Binh Vo, Vladimir Kolesnikov, Tal Malkin, Seung Geol

Choi, Wesley George, Angelos D. Keromytis, and Steve Bellovin. Blind seer: A scalable

private DBMS. In SP 2014, pages 359–374. IEEE Computer Society, 2014. 15, 17, 19

[71] Kaoru Kurosawa and Yasuhiro Ohtaki. Uc-secure searchable symmetric encryption. In

FC 2012, volume 7397 of Lecture Notes in Computer Science, pages 285–298. Springer,

2012. 15

[72] Mohamed Ahmed Abdelraheem, Tobias Andersson, and Christian Gehrmann. Search-

able encrypted relational databases: Risks and countermeasures. In DPM 2017 and

CBT 2017, volume 10436 of Lecture Notes in Computer Science, pages 70–85. Springer,

2017. 15, 18

[73] Scott Kirkpatrick, D. Gelatt Jr., and Mario P. Vecchi. Optimization by simmulated an-

nealing. Science, 220(4598):671–680, 1983. 16

133

REFERENCES

[74] Enron email dataset. Last accessed: August 8, 2017. 16

[75] Benny Chor, Eyal Kushilevitz, Oded Goldreich, and Madhu Sudan. Private information

retrieval. J. ACM, 45(6):965–981, 1998. 19

[76] Giovanni Di Crescenzo, Debra L. Cook, Allen McIntosh, and Euthimios Panagos. Prac-

tical private information retrieval from a time-varying, multi-attribute, and multiple-

occurrence database. In DBSec 2014, volume 8566 of Lecture Notes in Computer Sci-

ence, pages 339–355. Springer, 2014. 19

[77] Cédric Van Rompay, Refik Molva, and Melek Önen. Multi-user searchable encryption

in the cloud. In ISC 2015, volume 9290 of Lecture Notes in Computer Science, pages

299–316. Springer, 2015. 19

[78] Jonathan Dautrich and Chinya V. Ravishankar. Combining ORAM with PIR to minimize

bandwidth costs. In CODASPY 2015, pages 289–296. ACM, 2015. 19

[79] Sanjam Garg, Payman Mohassel, and Charalampos Papamanthou. TWORAM: efficient

oblivious RAM in two rounds with applications to searchable encryption. In CRYPTO

2016, volume 9816 of Lecture Notes in Computer Science, pages 563–592. Springer,

2016. 21

[80] Srinivas Devadas, Marten van Dijk, Christopher W. Fletcher, Ling Ren, Elaine Shi, and

Daniel Wichs. Onion ORAM: A constant bandwidth blowup oblivious RAM. In TCC

2016-A, volume 9563 of Lecture Notes in Computer Science, pages 145–174. Springer,

2016. 21

[81] Ling Ren, Christopher W. Fletcher, Albert Kwon, Emil Stefanov, Elaine Shi, Marten

van Dijk, and Srinivas Devadas. Constants count: Practical improvements to oblivious

RAM. In USENIX Security 2015, pages 415–430. USENIX Association, 2015. 21

[82] Muhammad Naveed. The fallacy of composition of oblivious RAM and searchable

encryption. IACR Cryptology ePrint Archive, 2015:668, 2015. 21

[83] Raphael Bost, Pierre-Alain Fouque, and David Pointcheval. Verifiable dynamic sym-

metric searchable encryption: Optimality and forward security. IACR Cryptology ePrint

Archive, 2016:62, 2016. 23

[84] Libing Wu, Biwen Chen, Kim-Kwang Raymond Choo, and Debiao He. Efficient and

secure searchable encryption protocol for cloud-based internet of things. J. Parallel

Distrib. Comput., 111:152–161, 2018. 23

134

REFERENCES

[85] Raphaël Bost, Brice Minaud, and Olga Ohrimenko. Forward and backward private

searchable encryption from constrained cryptographic primitives. In CCS 2017, pages

1465–1482. ACM, 2017. 23

[86] TPC-H. http://www.tpc.org/tpch/. Last accessed: August 15, 2017. 28, 58,

86, 115

[87] Raphael Bost and Pierre-Alain Fouque. Thwarting leakage abuse attacks against search-

able encryption – a formal approach and applications to database padding. Cryptology

ePrint Archive, Report 2017/1060, 2017. 28

[88] Muhammad Rizwan Asghar. Privacy Preserving Enforcement of Sensitive Policies in

Outsourced and Distributed Environments. PhD thesis, University of Trento, Trento,

Italy, December 2013. http://eprints-phd.biblio.unitn.it/1124/. 42

[89] Steven D. Galbraith, Kenneth G. Paterson, and Nigel P. Smart. Pairings for cryptogra-

phers. Discrete Applied Mathematics, 156(16):3113–3121, 2008. 44

[90] Muhammad Rizwan Asghar, Mihaela Ion, Giovanni Russello, and Bruno Crispo.

Espoonerbac: Enforcing security policies in outsourced environments. Computers &

Security, 35:2–24, 2013. 48, 74

[91] Guomin Yang, Chik How Tan, Qiong Huang, and Duncan S. Wong. Probabilistic public

key encryption with equality test. In CT-RSA 2010, volume 5985 of Lecture Notes in

Computer Science, pages 119–131. Springer, 2010. 49

[92] Tianhao Wang and Yunlei Zhao. Secure dynamic SSE via access indistinguishable stor-

age. In AsiaCCS 2016, pages 535–546. ACM, 2016. 62

[93] Konstantinos Chatzikokolakis, Miguel E. Andrés, Nicolás Emilio Bordenabe, and

Catuscia Palamidessi. Broadening the scope of differential privacy using metrics.

In PETS 2013, volume 7981 of Lecture Notes in Computer Science, pages 82–102.

Springer, 2013. 63

[94] John Bethencourt, Amit Sahai, and Brent Waters. Ciphertext-policy attribute-based en-

cryption. In S&P 2007, pages 321–334. IEEE Computer Society, 2007. 64

[95] Wenhai Sun, Xuefeng Liu, Wenjing Lou, Y. Thomas Hou, and Hui Li. Catch you if you

lie to me: Efficient verifiable conjunctive keyword search over large dynamic encrypted

cloud data. In INFOCOM 2015, pages 2110–2118. IEEE, 2015. 64

135

REFERENCES

[96] Rong Cheng, Jingbo Yan, Chaowen Guan, Fangguo Zhang, and Kui Ren. Verifiable

searchable symmetric encryption from indistinguishability obfuscation. In ASIACCS

2015, pages 621–626. ACM, 2015. 64

[97] Emil Stefanov and Elaine Shi. Multi-cloud oblivious storage. In SIGSAC 2013, pages

247–258. ACM, 2013. 67, 70, 90

[98] Donald E. Knuth. The Art of Computer Programming, Volume III: Sorting and Search-

ing. Addison-Wesley, 1973. 77

[99] Ian F. Blake and Vladimir Kolesnikov. One-round secure comparison of integers. J.

Mathematical Cryptology, pages 37–68, 2009. 85

[100] Cengiz Örencik, Ayse Selcuk, Erkay Savas, and Murat Kantarcioglu. Multi-keyword

search over encrypted data with scoring and search pattern obfuscation. Int. J. Inf. Sec.,

15(3):251–269, 2016. 91

[101] Mehmet Kuzu, Mohammad Saiful Islam, and Murat Kantarcioglu. Distributed search

over encrypted big data. In CODASPY 2015, pages 271–278. ACM, 2015. 91

[102] Geong Sen Poh, Moesfa Soeheila Mohamad, and Ji-Jian Chin. Searchable symmetric

encryption over multiple servers. Cryptography and Communications, 10(1):139–158,

2018. 91

[103] Benny Fuhry, Raad Bahmani, Ferdinand Brasser, Florian Hahn, Florian Kerschbaum,

and Ahmad-Reza Sadeghi. HardIDX: Practical and secure index with SGX. In DBSec

2017, pages 386–408. Springer, 2017. 93, 94, 98, 113, 116, 119

[104] A. Gribov, D. Vinayagamurthy, and S. Gorbunov. StealthDB: A Scalable Encrypted

Database with Full SQL Query Support. ArXiv e-prints, November 2017. 94, 120

[105] Wenting Zheng, Ankur Dave, Jethro G. Beekman, Raluca Ada Popa, Joseph E. Gonza-

lez, and Ion Stoica. Opaque: An oblivious and encrypted distributed analytics platform.

In Aditya Akella and Jon Howell, editors, NSDI 2017, pages 283–298. USENIX Asso-

ciation, 2017. 93, 94, 119, 120

[106] Sajin Sasy, Sergey Gorbunov, and Christopher W. Fletcher. ZeroTrace: Oblivious mem-

ory primitives from Intel SGX. IACR Cryptology ePrint Archive, 2017:549, 2017. 93,

94, 120

[107] Manuel Costa, Lawrence Esswood, Olga Ohrimenko, Felix Schuster, and Sameer Wagh.

The pyramid scheme: Oblivious RAM for trusted processors. CoRR, abs/1712.07882,

2017. 93, 94, 120

136

REFERENCES

[108] Adil Ahmad, Kyungtae Kim, Ashish Kumar, Muhammad Ihsanulhaq Sarfaraz, and By-

oungyoung Lee. OBLIVIATE: A data oblivious file system for intel sgx. 2018. 94

[109] Yuanzhong Xu, Weidong Cui, and Marcus Peinado. Controlled-channel attacks: De-

terministic side channels for untrusted operating systems. In SP 2015, pages 640–656.

IEEE Computer Society, 2015. 93, 94, 96, 98, 119

[110] Ferdinand Brasser, Urs Müller, Alexandra Dmitrienko, Kari Kostiainen, Srdjan Capkun,

and Ahmad-Reza Sadeghi. Software grand exposure: SGX cache attacks are practical.

In William Enck and Collin Mulliner, editors, WOOT 2017. USENIX Association, 2017.

93, 94, 97

[111] Sangho Lee, Ming-Wei Shih, Prasun Gera, Taesoo Kim, Hyesoon Kim, and Marcus

Peinado. Inferring fine-grained control flow inside SGX enclaves with branch shadow-

ing. In USENIX 2017, pages 557–574. USENIX Association, 2017. 93, 94, 98, 121

[112] Swarup Chandra, Vishal Karande, Zhiqiang Lin, Latifur Khan, Murat Kantarcioglu, and

Bhavani M. Thuraisingham. Securing data analytics on SGX with randomization. In

ESORICS 2017, pages 352–369. Springer, 2017. 94

[113] Shweta Shinde, Zheng Leong Chua, Viswesh Narayanan, and Prateek Saxena. Prevent-

ing page faults from telling your secrets. In AsiaCCS 2016, pages 317–328. ACM, 2016.

94

[114] Ferdinand Brasser, Srdjan Capkun, Alexandra Dmitrienko, Tommaso Frassetto, Kari

Kostiainen, Urs Müller, and Ahmad-Reza Sadeghi. DR.SGX: hardening SGX enclaves

against cache attacks with data location randomization. CoRR, abs/1709.09917, 2017.

94

[115] Frank McKeen, Ilya Alexandrovich, Alex Berenzon, Carlos V. Rozas, Hisham Shafi,

Vedvyas Shanbhogue, and Uday R. Savagaonkar. Innovative instructions and software

model for isolated execution. In HASP 2013, page 10, 2013. 96

[116] Introduction to Intel SGX sealing. https://software.intel.com/en-us/

blogs/2016/05/04/introduction-to-intel-sgx-sealing. Last ac-

cessed: March 4, 2018. 96

[117] Ahmad Moghimi, Gorka Irazoqui, and Thomas Eisenbarth. CacheZoom: How SGX

amplifies the power of cache attacks. In CHES 2017, volume 10529 of Lecture Notes in

Computer Science, pages 69–90. Springer, 2017. 97, 98

137

REFERENCES

[118] David Brumley and Dan Boneh. Remote timing attacks are practical. In USENIX 2003.

USENIX Association, 2003. 98

[119] Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache attacks and countermeasures:

The case of AES. In CT-RSA 2006, pages 1–20. Springer, 2006. 98

[120] J. Ambrose and A. Ignjatovic. Power Analysis Side Channel Attacks: The Processor

Design-level Context. Omniscriptum Gmbh & Company Kg., 2010. 98

[121] Karine Gandolfi, Christophe Mourtel, and Francis Olivier. Electromagnetic analysis:

Concrete results. In CHES 2001, volume 2162 of Lecture Notes in Computer Science,

pages 251–261. Springer, 2001. 98

[122] Raghu Ramakrishnan and Johannes Gehrke. Database management systems. McGraw

Hill, 2000. 98

[123] Nested loop join. https://en.wikipedia.org/wiki/Nested_loop_join.

Last accessed: April 8, 2018. 110

[124] Hash join. https://en.wikipedia.org/wiki/Hash_join. Last accessed:

April 8, 2018. 110

[125] Sort-merge join. https://en.wikipedia.org/wiki/Sort-merge_join.

Last accessed: April 8, 2018. 110

[126] GnuPG. https://www.gnupg.org/index.html. 115

[127] An oblivious general-purpose SQL database for the cloud. https://github.com/

SabaEskandarian/ObliDB. Last accessed: March 4, 2018. 119

[128] Meni Orenbach, Pavel Lifshits, Marina Minkin, and Mark Silberstein. Eleos: ExitLess

OS services for SGX enclaves. In EuroSys 2017, pages 238–253. ACM, 2017. 120

[129] Andrei Z. Broder and Anna R. Karlin. Multilevel adaptive hashing. In ACM-SIAM 1990,

pages 43–53. SIAM, 1990. 120

[130] Xiao Shaun Wang, T.-H. Hubert Chan, and Elaine Shi. Circuit ORAM: on tightness of

the goldreich-ostrovsky lower bound. In SIGSAC, 2015, pages 850–861. ACM, 2015.

120

[131] Yu Guo, Cong Wang, and Xiaohua Jia. Enabling secure and dynamic deep packet in-

spection in outsourced middleboxes. In AsiaCCS 2018, pages 49–55. ACM, 2018. 125

138

REFERENCES

[132] Xingliang Yuan, Huayi Duan, and Cong Wang. Assuring string pattern matching in

outsourced middleboxes. IEEE/ACM Trans. Netw., 26(3):1362–1375, 2018. 125

[133] Xingliang Yuan, Huayi Duan, and Cong Wang. Bringing execution assurances of pat-

tern matching in outsourced middleboxes. In ICNP 2016, pages 1–10. IEEE Computer

Society, 2016. 125

[134] Anne Edmundson, Paul Schmitt, Nick Feamster, and Jennifer Rexford. OCDN: oblivi-

ous content distribution networks. CoRR, abs/1711.01478, 2017. 125

[135] Jeremie Leguay, Georgios S. Paschos, Elizabeth A. Quaglia, and Ben Smyth. Crypto-

Cache: Network caching with confidentiality. In ICC 2017, pages 1–6. IEEE, 2017.

125

[136] S. Cui, M. R. Asghar, and G. Russello. Multi-cdn: Towards privacy in content delivery

networks. IEEE Transactions on Dependable and Secure Computing, 2018. 125

[137] Mihaela Ion, Giovanni Russello, and Bruno Crispo. Design and implementation of a

confidentiality and access control solution for publish/subscribe systems. Computer

networks, 56(7):2014–2037, 2012. 125

[138] Rafael Pires, Marcelo Pasin, Pascal Felber, and Christof Fetzer. Secure content-based

routing using intel software guard extensions. In Middleware 2016, page 10. ACM,

2016. 125

[139] Shujie Cui, Sana Belguith, Pramodya De Alwis, Muhammad Rizwan Asghar, and Gio-

vanni Russello. Malicious entities are in vain: Preserving privacy in publish and sub-

scribe systems. In The 17th IEEE International Conference On Trust, Security And

Privacy In Computing And Communications (Trustcom) 2018, 2018. 125

[140] Zibin Zheng, Shaoan Xie, Hongning Dai, Xiangping Chen, and Huaimin Wang. An

overview of blockchain technology: Architecture, consensus, and future trends. In 2017

IEEE International Congress on Big Data, BigData Congress 2017, Honolulu, HI, USA,

June 25-30, 2017, pages 557–564. IEEE Computer Society, 2017. 125

[141] Shanhe Yi, Cheng Li, and Qun Li. A survey of fog computing: Concepts, appli-

cations and issues. In Proceedings of the 2015 Workshop on Mobile Big Data, Mo-

bidata@MobiHoc 2015, Hangzhou, China, June 21, 2015, pages 37–42. ACM, 2015.

125

139

